Skip to main content
Log in

Mechanical properties and corrosion resistance of TC4 titanium alloy joints by plasma arc welding + gas tungsten arc welding combination welding

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, plasma arc welding (PAW) and plasma arc welding combined with gas tungsten arc welding (PAW + GTAW) were used to weld TC4 titanium alloy plate (thickness of 8 mm). The relationship between mechanical properties, corrosion resistance, phase composition, and microstructure of PAW welded joint (P) and PAW + GTAW welded joint (P + G) was compared. Tensile test and microhardness results show that P + G welded joints exhibit superior mechanical properties compared to P welded joints. The polarization curves and EIS results of both P and P + G samples were compared. The surface morphology of the samples was evaluated, and the potential corrosion mechanism of P and P + G samples was provided. The research results reveal that the PAW + GTAW welding has positively affected the corrosion performance of TC4 alloy welded joints. The improved corrosion resistance of welded joints is associated with a low β/α phase volume ratio, small grain size, and HAGB content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Wu BT, Pan ZX, Li SY, Cuiuri D, Ding DH, Li HJ (2018) The anisotropic corrosion behaviour of wire arc additive manufactured Ti-6Al-4V alloy in 3.5% NaCl solution. Corros Sci 137:176. https://doi.org/10.1016/j.corsci.2018.03.047

    Article  CAS  Google Scholar 

  2. Hl P, Xf Li, Chen X, Jiang J, Jf L, Xiong W, Chen J (2020) Effect of grain size on high-temperature stress relaxation behavior of fine-grained TC4 titanium alloy. Trans Nonferrous Met Soc China 30:668. https://doi.org/10.1016/S1003-6326(20)65244-X

    Article  Google Scholar 

  3. Yin MG, Cai ZB, Li ZY, Zhou ZR, Wang WJ, He WF (2019) Improving impact wear resistance of Ti-6Al-4V alloy treated by laser shock peening. Trans Nonferrous Met Soc China 29:1439. https://doi.org/10.1016/S1003-6326(19)65051-X

    Article  CAS  Google Scholar 

  4. Yang X, Wang WL, Ma WJ, Wang Y, Yang JG, Liu SF, Tang HP (2020) Corrosion and wear properties of micro-arc oxidation treated Ti6Al4V alloy prepared by selective electron beam melting. Trans Nonferrous Met Soc China 30:2132. https://doi.org/10.1016/S1003-6326(20)65366-3

    Article  CAS  Google Scholar 

  5. Leonov VP, Mikhaylov VI (2016) Technological and constructional features of welding titanium alloys for marine structures. Weld Int 30:403. https://doi.org/10.1080/09507116.2015.1090171

    Article  Google Scholar 

  6. Topolyanskiy PA, Ermakov SA, Sosnin NA (2016) Welding titanium with a constricted arc. Weld Int 30:301. https://doi.org/10.1080/01431161.2015.1058003

    Article  Google Scholar 

  7. Prisco U, Astarita A, El Hassanin A, Franchitti S (2019) Influence of processing parameters on microstructure and roughness of electron beam melted Ti-6Al-4V titanium alloy. Mater Manuf Processes 34:1753. https://doi.org/10.1080/10426914.2019.1683576

    Article  CAS  Google Scholar 

  8. Lu SP, Qin MP, Dong WC (2013) Highly efficient TIG welding of Cr13Ni5Mo martensitic stainless steel. J Mater Process Technol 213:229. https://doi.org/10.1016/j.jmatprotec.2012.09.025

    Article  CAS  Google Scholar 

  9. Shi Yh, Zp Z, Huang J (2013) Sensitivity model for prediction of bead geometry in underwater wet flux cored arc welding. Trans Nonferrous Met Soc China 23:1977. https://doi.org/10.1016/S1003-6326(13)62686-2

    Article  Google Scholar 

  10. Pragatheswaran T, Rajakumar S, Balasubramanian V (2022) Optimization of the weld characteristics of plasma-arc welded titanium alloy joints: an experimental study. Mater Manuf Processes 37:896. https://doi.org/10.1080/10426914.2021.2001521

    Article  CAS  Google Scholar 

  11. Lin CM, Lu CH (2016) Effects of tempering temperature on microstructural evolution and mechanical properties of high-strength low-alloy D6AC plasma arc welds. Mater Sci Eng, A 676:28. https://doi.org/10.1016/j.msea.2016.08.090

    Article  CAS  Google Scholar 

  12. Quitzke C, Schröder C, Mandel M, Krüger L, Volkova O, Wendler M (2022) Solidification of plasma TIG-welded N-alloyed austenitic CrMnNi stainless steel. Weld World 66:2217. https://doi.org/10.1007/s40194-022-01353-x

    Article  CAS  Google Scholar 

  13. Prasad S, Pal S, Robi PS (2020) Analysis of weld characteristics of micro plasma arc welded thin stainless steel 306 L sheet. J Manuf Processes 57:957. https://doi.org/10.1016/j.jmapro.2020.07.062

    Article  Google Scholar 

  14. Hussain MI, Khushnood S (2023) Studies on the effects of cryogenic cooling on microstructure and mechanical properties of plasma arc welded SS 316. Mater Res Express 10:036508. https://doi.org/10.1088/2053-1591/acbe27

    Article  Google Scholar 

  15. Karimzadeh F, Salehi M, Saatchi A, Meratian M (2005) Effect of microplasma arc welding process parameters on grain growth and porosity distribution of thin sheet Ti6Al4V alloy weldment. Mater Manuf Processes 20:205. https://doi.org/10.1081/AMP-200041857

    Article  CAS  Google Scholar 

  16. Baruah M, Bag S (2016) Microstructural influence on mechanical properties in plasma microwelding of Ti6Al4V Alloy. J Mater Eng Perform 25:4718. https://doi.org/10.1007/s11665-016-2333-8

    Article  CAS  Google Scholar 

  17. Liu ZM, Cui S, Luo Z, Zhang C, Wang Z, Zhang Y (2016) Plasma arc welding: process variants and its recent developments of sensing, controlling and modeling. J Manuf Processes 23:315. https://doi.org/10.1016/j.jmapro.2016.04.004

    Article  CAS  Google Scholar 

  18. Miao Y, Wu Y, Wang Z, Zhao Y, Li C, Liu J (2022) Process stability and material properties of TC4 alloy welded by bypass current hot wire plasma arc welding (BC-PAW). Metals-Basel 12:1949. https://doi.org/10.3390/met12111949

    Article  CAS  Google Scholar 

  19. Tolvanen S, Pederson R, Klement U (2024) Microstructure and mechanical properties of Ti-6Al-4V welds produced with different processes. Materials 17:782. https://doi.org/10.3390/ma17040782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kuril AA, Janaki Ram GD, Bakshi SR (2019) Microstructure and mechanical properties of keyhole plasma arc welded dual phase steel DP600. J Mater Process Technol 270:28. https://doi.org/10.1016/j.jmatprotec.2019.02.018

    Article  CAS  Google Scholar 

  21. Yuan T, Li Y, Ren X, Jiang X, Zhao P (2023) Effect of pulse current on grain refinement in Ti6Al4V welds during pulsed plasma arc welding. J Mater Eng Perform. https://doi.org/10.1007/s11665-023-08543-8

    Article  Google Scholar 

  22. Jiang F, Peng S, Zhang G, Xu B, Cai X, Chen S, Zhang P (2024) Investigation of arc behavior and welding formation for a novel vector gas regulated plasma arc welding. J Manuf Processes 119:768. https://doi.org/10.1016/j.jmapro.2024.04.022

    Article  Google Scholar 

  23. Cai D, Luo Z, Han S, Xue Y, Chen C, Zhang Y (2023) Plasma characteristics of a novel coaxial laser-plasma hybrid welding of Ti alloy. Opt Lasers Eng 167:107599. https://doi.org/10.1016/j.optlaseng.2023.107599

    Article  Google Scholar 

  24. Han J, Han Y, Sun Z, Hong H (2022) Effect of plasma welding current on heat source penetration ability of plasma-GMAW hybrid welding. Int J Adv Manuf Technol 123:1835. https://doi.org/10.1007/s00170-022-10280-6

    Article  Google Scholar 

  25. Hong X, Huang B, Li T, Chen P, Zheng J, Zhu Y (2023) Effects of welding speed and welding current on the residual stress and deformation of SAF 2507/316L dissimilar plasma arc welding. J Mater Eng Perform. https://doi.org/10.1007/s11665-023-08969-0

    Article  Google Scholar 

  26. Liu S, Shin YC (2019) Additive manufacturing of Ti6Al4V alloy: a review. Mater Des 164:107552. https://doi.org/10.1016/j.matdes.2018.107552

    Article  CAS  Google Scholar 

  27. DebRoy T, Wei HL, Zuback JS et al (2018) Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci 92:112. https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  CAS  Google Scholar 

  28. Dharmendra C, Hadadzadeh A, Amirkhiz BS, Lloyd A, Mohammadi M (2020) Deformation mechanisms and fracture of electron beam melted Ti–6Al–4V. Mater Sci Eng, A 771:138652. https://doi.org/10.1016/j.msea.2019.138652

    Article  CAS  Google Scholar 

  29. Ou P, Cao Z, Hai M, Qiang J, Wang Y, Wang J, Zheng G, Zhang J (2023) Microstructure and mechanical properties of K-TIG welded dissimilar joints between TC4 and TA17 titanium alloys. Mater Charact 196:112644. https://doi.org/10.1016/j.matchar.2023.112644

    Article  CAS  Google Scholar 

  30. Wroński S, Tarasiuk J, Bacroix B, Baczmański A, Braham C (2012) Investigation of plastic deformation heterogeneities in duplex steel by EBSD. Mater Charact 73:52. https://doi.org/10.1016/j.matchar.2012.07.016

    Article  CAS  Google Scholar 

  31. Ehtemam-Haghighi S, Liu Y, Cao G, Zhang L-C (2016) Phase transition, microstructural evolution and mechanical properties of Ti-Nb-Fe alloys induced by Fe addition. Mater Des 97:279. https://doi.org/10.1016/j.matdes.2016.02.094

    Article  CAS  Google Scholar 

  32. Ehtemam-Haghighi S, Liu Y, Cao G, Zhang L-C (2016) Influence of Nb on the β→α″ martensitic phase transformation and properties of the newly designed Ti–Fe–Nb alloys. Mater Sci Eng, C 60:503. https://doi.org/10.1016/j.msec.2015.11.072

    Article  CAS  Google Scholar 

  33. Haghighi SE, Janghorban K, Izadi S (2010) Structural evolution of Fe–50at.% Al powders during mechanical alloying and subsequent annealing processes. J Alloys Compd 495:260. https://doi.org/10.1016/j.jallcom.2010.01.145

    Article  CAS  Google Scholar 

  34. Zhang Q, Chen J, Guo P, Tan H, Lin X, Huang W (2015) Texture and microstructure characterization in laser additive manufactured Ti–6Al–2Zr–2Sn–3Mo–1.5Cr–2Nb titanium alloy. Mater Des 88:550. https://doi.org/10.1016/j.matdes.2015.09.053

    Article  CAS  Google Scholar 

  35. Hayes BJ, Martin BW, Welk B et al (2017) Predicting tensile properties of Ti-6Al-4V produced via directed energy deposition. Acta Mater 133:120. https://doi.org/10.1016/j.actamat.2017.05.025

    Article  CAS  Google Scholar 

  36. Li D, Fan G, Huang X et al (2021) Enhanced strength in pure Ti via design of alternating coarse- and fine-grain layers. Acta Mater 206:116627. https://doi.org/10.1016/j.actamat.2021.116627

    Article  CAS  Google Scholar 

  37. Cao X, Jahazi M (2009) Effect of welding speed on butt joint quality of Ti–6Al–4V alloy welded using a high-power Nd:YAG laser. Opt Lasers Eng 47:1231. https://doi.org/10.1016/j.optlaseng.2009.05.010

    Article  Google Scholar 

  38. Squillace A, Prisco U, Ciliberto S, Astarita A (2012) Effect of welding parameters on morphology and mechanical properties of Ti–6Al–4V laser beam welded butt joints. J Mater Process Technol 212:427. https://doi.org/10.1016/j.jmatprotec.2011.10.005

    Article  CAS  Google Scholar 

  39. Gao F, Cui Y, Lv Y, Yu W, Jiang P (2021) Microstructure and properties of Ti–6Al–4V alloy welded joint by keyhole gas tungsten arc welding. Mater Sci Eng, A 827:142024. https://doi.org/10.1016/j.msea.2021.142024

    Article  CAS  Google Scholar 

  40. Vahidshad Y, Khodabakhshi AH (2021) An investigation of different parameters on the penetration depth and welding width of Ti-6Al-4V alloy by plasma arc welding. Weld World 65:485. https://doi.org/10.1007/s40194-020-01024-9

    Article  CAS  Google Scholar 

  41. Zhang P, Li SX, Zhang ZF (2011) General relationship between strength and hardness. Mater Sci Eng, A 529:62. https://doi.org/10.1016/j.msea.2011.08.061

    Article  CAS  Google Scholar 

  42. Liu K, Li Y, Wang J (2016) Microstructure and low-temperature mechanical properties of 304 stainless steel joints by PAW + GTAW combined welding. J Mater Eng Perform 25:4561. https://doi.org/10.1007/s11665-016-2288-9

    Article  CAS  Google Scholar 

  43. Hashemi SH (2011) Strength–hardness statistical correlation in API X65 steel. Mater Sci Eng, A 528:1648. https://doi.org/10.1016/j.msea.2010.10.089

    Article  CAS  Google Scholar 

  44. Park JH, Hamad K, Widiantara IP, Ko YG (2015) Strain and crystallographic texture evaluation of interstitial free steel cold deformed by differential speed rolling. Mater Lett 147:38. https://doi.org/10.1016/j.matlet.2015.02.030

    Article  CAS  Google Scholar 

  45. Wei Y, Pan ZM, Fu Y, Yu W, He SL, Yuan QY, Luo H, Li XG (2022) Effect of annealing temperatures on microstructural evolution and corrosion behavior of Ti-Mo titanium alloy in hydrochloric acid. Corros Sci 197:110079. https://doi.org/10.1016/j.corsci.2021.110079

    Article  CAS  Google Scholar 

  46. Yang JJ, Yang HH, Yu HC, Wang ZM, Zeng XY (2017) Corrosion behavior of additive manufactured Ti-6Al-4V alloy in NaCl solution. Metall Mater Trans A 48:3583. https://doi.org/10.1007/s11661-017-4087-9

    Article  CAS  Google Scholar 

  47. Zaveri N, Mahapatra M, Deceuster A, Peng Y, Li L, Zhou A (2008) Corrosion resistance of pulsed laser-treated Ti–6Al–4V implant in simulated biofluids. Electrochim Acta 53:5022. https://doi.org/10.1016/j.electacta.2008.01.086

    Article  CAS  Google Scholar 

  48. Li JQ, Lin X, Guo PF, Song MH, Huang WD (2018) Electrochemical behaviour of laser solid formed Ti–6Al–4V alloy in a highly concentrated NaCl solution. Corros Sci 142:161. https://doi.org/10.1016/j.corsci.2018.07.023

    Article  CAS  Google Scholar 

  49. Osório WR, Freire CM, Garcia A (2005) The role of macrostructural morphology and grain size on the corrosion resistance of Zn and Al castings. Mater Sci Eng, A 402:22. https://doi.org/10.1016/j.msea.2005.02.094

    Article  CAS  Google Scholar 

  50. Ullah R, Lu JX, Sang LJ, Rizwan M, Zhang YF, Zhang Z (2021) Investigating the microstructural evolution during deformation of laser additive manufactured Ti–6Al–4V at 400 °C using in-situ EBSD. Mater Sci Eng, A 823:141761. https://doi.org/10.1016/j.msea.2021.141761

    Article  CAS  Google Scholar 

  51. Lin CH, Duh JG (2009) Electrochemical impedance spectroscopy (EIS) study on corrosion performance of CrAlSiN coated steels in 3.5wt.% NaCl solution. Surf Coat Technol 204:784. https://doi.org/10.1016/j.surfcoat.2009.09.059

    Article  CAS  Google Scholar 

  52. Ribeiro AM, Alves AC, Rocha LA, Silva FS, Toptan F (2015) Synergism between corrosion and wear on CoCrMo−Al2O3 biocomposites in a physiological solution. Tribol Int 91:198. https://doi.org/10.1016/j.triboint.2015.01.018

    Article  CAS  Google Scholar 

  53. Sulima I, Kowalik R, Hyjek P (2016) The corrosion and mechanical properties of spark plasma sintered composites reinforced with titanium diboride. J Alloys Compd 688:1195. https://doi.org/10.1016/j.jallcom.2016.07.132

    Article  CAS  Google Scholar 

  54. Dai NW, Zhang LC, Zhang JX, Chen QM, Wu ML (2016) Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution. Corros Sci 102:484. https://doi.org/10.1016/j.corsci.2015.10.041

    Article  CAS  Google Scholar 

  55. Luo H, Zou SW, Chen YH, Li ZM, Du CW, Li XG (2020) Influence of carbon on the corrosion behaviour of interstitial equiatomic CoCrFeMnNi high-entropy alloys in a chlorinated concrete solution. Corros Sci 163:108287. https://doi.org/10.1016/j.corsci.2019.108287

    Article  CAS  Google Scholar 

  56. Argade GR, Panigrahi SK, Mishra RS (2012) Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium. Corros Sci 58:145. https://doi.org/10.1016/j.corsci.2012.01.021

    Article  CAS  Google Scholar 

  57. King AD, Birbilis N, Scully JR (2014) Accurate electrochemical measurement of magnesium corrosion rates; a combined impedance, mass-loss and hydrogen collection study. Electrochim Acta 121:394. https://doi.org/10.1016/j.electacta.2013.12.124

    Article  CAS  Google Scholar 

  58. Gai X, Bai Y, Li J et al (2018) Electrochemical behaviour of passive film formed on the surface of Ti-6Al-4V alloys fabricated by electron beam melting. Corros Sci 145:80. https://doi.org/10.1016/j.corsci.2018.09.010

    Article  CAS  Google Scholar 

  59. Wang C, Tian P, Cao H et al (2022) Enhanced biotribological and anticorrosion properties and bioactivity of Ti6Al4V alloys with laser texturing. ACS Omega 7:31081. https://doi.org/10.1021/acsomega.2c03166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lu J, Ge P, Li Q, Zhang W, Huo W, Hu J, Zhang Y, Zhao Y (2017) Effect of microstructure characteristic on mechanical properties and corrosion behavior of new high strength Ti-1300 beta titanium alloy. J Alloys Compd 727:1126. https://doi.org/10.1016/j.jallcom.2017.08.239

    Article  CAS  Google Scholar 

  61. Peng Y, Zhang J, Yang G et al (2024) Multi-pass butt welding of thick TA5 titanium-alloy plates by MIG: microstructure and properties. Mater Today Commun 39:108965. https://doi.org/10.1016/j.mtcomm.2024.108965

    Article  CAS  Google Scholar 

  62. Xu Y, Li Z, Zhang G et al (2019) Electrochemical corrosion and anisotropic tribological properties of bioinspired hierarchical morphologies on Ti-6Al-4V fabricated by laser texturing. Tribol Int 134:352. https://doi.org/10.1016/j.triboint.2019.01.040

    Article  CAS  Google Scholar 

  63. Meng K, Guo K, Yu Q, Miao D, Yao C, Wang Q, Wang T (2021) Effect of annealing temperature on the microstructure and corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy in hydrochloric acid solution. Corros Sci 183:109320. https://doi.org/10.1016/j.corsci.2021.109320

    Article  CAS  Google Scholar 

  64. Gao S, Li Z, Fan L, Ma L, Sun M (2023) Mechanism of the element microsegregation induced corrosion difference of Ti6321 weldment. Corros Sci 219:111194. https://doi.org/10.1016/j.corsci.2023.111194

    Article  CAS  Google Scholar 

  65. Li Z, Zhao W, Zhang H, Xiao G, Yu K (2023) Microstructure and corrosion resistance of fusion zone in Ti-6Al-4V alloy welded using pulsed- and continuous-wave lasers. Corros Sci 220:111269. https://doi.org/10.1016/j.corsci.2023.111269

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China, the Key Research and Development Program of Shanxi Province and the Graduate Innovation Program of Taiyuan University of Science and Technology (Grant Nos. U23A20627, 202102050201001 and BY2022001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhisheng Wu or Fei Zhao.

Additional information

Handling Editor: Nima Haghdadi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wu, Z., Li, Y. et al. Mechanical properties and corrosion resistance of TC4 titanium alloy joints by plasma arc welding + gas tungsten arc welding combination welding. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09967-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-09967-w

Navigation