Skip to main content
Log in

Highly selective electrochemical reduction of nitrate-to-ammonia using iron phosphide self-supported electrode

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nitrate electrocatalytic reduction (NO3RR) is a potential approach to ammonia (NH3) production, and the limited NH4+–N selectivity and NH4+–N yield rate are great challenges in NO3RR to NH3. Herein, the self-supported iron phosphide electrodes were successfully prepared by electrodeposition and low-temperature pyrolysis method. The characterization results shown that 0.2FexP/Fe0-300 electrode consisted of amorphous FexP and crystalline Fe0 particles. 0.2FexP/Fe0-300 electrode exhibited the good NO3RR performance with high NO3–N removal efficiency of 96.04%, NH4+–N selectivity of 97.52%, and NH4+–N yield rate of 57.24 μmol·cm−2·h−1 at initial NO3–N concentration of 50 mg·L−1, while 96.47% NH4+–N FE was obtained at initial NO3–N concentration of 200 mg·L−1. In direct reduction pathway, amorphous FexP, serving as an electron mediator, and crystalline Fe0, acting as the electron donor, facilitated the electron-transfer. However, in indirect reduction pathway, the generated atomic H* with strong reducibility, contributed marginally to NO3–N reduction in 0.2FexP/Fe0-300 electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The data are available from the corresponding author upon reasonable request.

References

  1. Hollevoet L, Michiel DR, Maarten R, Hofkens J, Martens JA (2020) Energy-efficient ammonia production from air and water using electrocatalysts with limited faradaic efficiency. ACS Energy Lett 5(4):1124–1127. https://doi.org/10.1021/acsenergylett.0c00455

    Article  CAS  Google Scholar 

  2. Chu K, Li XC, Li QQ, Guo YL, Zhang H (2021) Synergistic enhancement of electrocatalytic nitrogen reduction over boron nitride quantum dots decorated Nb2CTx-MXene. Small 17(40):2102363. https://doi.org/10.1002/smll.202102363

    Article  CAS  Google Scholar 

  3. Wang YT, Wang CH, Li MY, Yu YF, Zhang B (2021) Nitrate electroreduction: mechanism insight, in situ characterization, performance evaluation, and challenges. Chem Soc Rev 50(12):6720–6733. https://doi.org/10.1039/D1CS00116G

    Article  CAS  PubMed  Google Scholar 

  4. Liu H, Lang X, Zhu C et al (2022) Efficient electrochemical nitrate reduction to ammonia with copper-supported rhodium cluster and single-atom catalysts. Angew Chem Int Edit 61(23):e202202556. https://doi.org/10.1002/anie.202202556

    Article  CAS  Google Scholar 

  5. Hirakawa H, Hashimoto M, Shiraishi Y, Hirai T (2017) Selective nitrate-to-ammonia transformation on surface defects of titanium dioxide photocatalysts. ACS Catal 7:3713–3720. https://doi.org/10.1021/acscatal.7b00611

    Article  CAS  Google Scholar 

  6. Liu Q, Xie LS, Liang J et al (2022) Ambient ammonia synthesis via electrochemical reduction of nitrate enabled by NiCo2O4 nanowire array. Small 18(13):2106961. https://doi.org/10.1002/smll.202106961

    Article  CAS  Google Scholar 

  7. Montoya JH, Tsai C, Vojvodic A, Nørskov JK (2015) The challenge of electrochemical ammonia synthesis: A new perspective on the role of nitrogen scaling relations. Chemsuschem 8(13):2180–2186. https://doi.org/10.1002/cssc.201500322

    Article  CAS  PubMed  Google Scholar 

  8. Ren YW, Yu C, Tan XY, Huang HL, Wei QB, Qiu JS (2021) Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: challenges and perspectives. Energy Environ Sci 14(3):1176–1193. https://doi.org/10.1039/D0EE03596C

    Article  CAS  Google Scholar 

  9. Xu H, Ma YY, Chen J, Zhang WX, Yang JP (2022) Electrocatalytic reduction of nitrate—a step towards a sustainable nitrogen cycle. Chem Soc Rev 51(7):2710–2758. https://doi.org/10.1039/D1CS00857A

    Article  CAS  PubMed  Google Scholar 

  10. Liu FD, Yu YB, He H (2014) Environmentally-benign catalysts for the selective catalytic reduction of NOx from diesel engines: structure–activity relationship and reaction mechanism aspects. Chem Commun 50(62):8445–8463. https://doi.org/10.1039/C4CC01098A

    Article  CAS  Google Scholar 

  11. Martínez J, Ortiz A, Ortiz I (2017) State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates. Appl Catal B Environ 207:42–59. https://doi.org/10.1016/j.apcatb.2017.02.016

    Article  CAS  Google Scholar 

  12. Comer BM, Fuentes P, Dimkpa CO et al (2019) Prospects and challenges for solar fertilizers. Joule 3(7):1578–1605. https://doi.org/10.1016/j.joule.2019.05.001

    Article  CAS  Google Scholar 

  13. Wang ST, Zhang XM, Wang C, Zhang X, Reis S, Xu JM, Gu BJ (2020) A high-resolution map of reactive nitrogen inputs to China. Sci Data 7(1):379. https://doi.org/10.6084/m9.figshare.12971939

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kim MS, Chung SH, Yoo CJ, Lee MS, Cho IH, Lee DW, Lee KY (2013) Catalytic reduction of nitrate in water over Pd–Cu/TiO2 catalyst: effect of the strong metal-support interaction (SMSI) on the catalytic activity. Appl Catal B Environ 142–143:354–361. https://doi.org/10.1016/j.apcatb.2013.05.033

    Article  CAS  Google Scholar 

  15. Wang YH, Sun MZ, Zhou JW et al (2023) Atomic coordination environment engineering of bimetallic alloy nanostructures for efficient ammonia electrosynthesis from nitrate. P Natl Acad Sci USA 120(32):e2306461120. https://doi.org/10.1073/pnas.2306461120

    Article  CAS  Google Scholar 

  16. Su JF, Kuan WF, Liu HJ, Huang CP (2019) Mode of electrochemical deposition on the structure and morphology of bimetallic electrodes and its effect on nitrate reduction toward nitrogen selectivity. Appl Catal B Environ 257:117909. https://doi.org/10.1016/j.apcatb.2019.117909

    Article  CAS  Google Scholar 

  17. Chen T, Li YX, Li LY, Zhao YJ, Shi SH, Jiang RY, Ma H (2019) Cu modified Pt nanoflowers with preferential (100) surfaces for selective eectroreduction of nitrate. Catalysts 9(6):536. https://doi.org/10.3390/catal9060536

    Article  CAS  Google Scholar 

  18. Li Y, Dong ZH, Jiao LF (2020) Multifunctional transition metal-based phosphides in energy-related electrocatalysis. Adv Energy Mater 10(11):1902104. https://doi.org/10.1002/aenm.201902104

    Article  CAS  Google Scholar 

  19. Liu T, Li AR, Wang CB, Zhou W, Liu SJ, Guo L (2018) Interfacial electron transfer of Ni2P–NiP2 polymorphs inducing enhanced electrochemical properties. Adv Mater 30(46):1803590. https://doi.org/10.1002/adma.201803590

    Article  CAS  Google Scholar 

  20. Roberts E, Read C, Lewis N, Brutchey R (2018) Phase directing ability of an lonic liquid solvent for the snthesis of HER-active Ni2P nanocrystals. ACS Appl Energy Mater 1:1823–1827. https://doi.org/10.1021/acsaem.8b00213

    Article  CAS  Google Scholar 

  21. Gao YH, Wang KP, Xu C et al (2023) Enhanced electrocatalytic nitrate reduction through phosphorus-vacancy-mediated kinetics in heterogeneous bimetallic phosphide hollow nanotube array. Appl Catal B Environ 330:122627. https://doi.org/10.1016/j.apcatb.2023.122627

    Article  CAS  Google Scholar 

  22. Gao JN, Jiang B, Ni CC, Qi YF, Bi XJ (2020) Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co3O4 cathode: Mechanism exploration from both experimental and DFT studies. Chem Eng J 382:123034. https://doi.org/10.1016/j.cej.2019.123034

    Article  CAS  Google Scholar 

  23. Ling L, Huang XY, Zhang WX (2018) Enrichment of precious metals from wastewater with core–shell nanoparticles of iron. Adv Mater 30(17):1705703. https://doi.org/10.1002/adma.201705703

    Article  CAS  Google Scholar 

  24. Guan XH, Sun YK, Qin HJ, Li JX, Lo IMC, He D, Dong HR (2015) The Iimitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994–2014). Water Res 75:224–248. https://doi.org/10.1016/j.watres.2015.02.034

    Article  CAS  PubMed  Google Scholar 

  25. Su CM, Puls RW (2004) Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate. Environ Sci Technol 38(9):2715–2720. https://doi.org/10.1021/es034650p

    Article  CAS  PubMed  Google Scholar 

  26. Sohn K, Kang SW, Ahn S, Woo M, Yang SK (2006) Fe0 nanoparticles for nitrate reduction: Stability, reactivity, and transformation. Environ Sci Technol 40(17):5514–5519. https://doi.org/10.1021/es0525758

    Article  CAS  PubMed  Google Scholar 

  27. Li XQ, Elliott DW, Zhang WX (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State 31(4):111–122. https://doi.org/10.1080/10408430601057611

    Article  CAS  Google Scholar 

  28. Wang JL, Bai ZY (2017) Fe-Based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater. Chem Eng J 312:79–98. https://doi.org/10.1016/j.cej.2016.11.118

    Article  CAS  Google Scholar 

  29. Teng W, Bai N, Liu Y, Liu YP, Fan JW, Zhang WX (2018) Selective nitrate reduction to dinitrogen by electrocatalysis on nanoscale iron encapsulated in mesoporous carbon. Environ Sci Technol 52(1):230–236. https://doi.org/10.1021/acs.est.7b04775

    Article  CAS  PubMed  Google Scholar 

  30. Li LJ, Huang WJ, Lei JL, Shang B, Li N, Pan F (2019) Holey nanospheres of amorphous bimetallic phosphide electrodeposited on 3D porous Ni foam for efficient oxygen evolution. Appl Surf Sci 479:540–547. https://doi.org/10.1016/j.apsusc.2019.02.134

    Article  CAS  Google Scholar 

  31. Lan Y, Chen JL, Zhang H, Zhang WX, Yang JP (2020) Fe/Fe3C nanoparticle-decorated N-doped carbon nanofibers for improving the nitrogen selectivity of electrocatalytic nitrate reduction. J Mater Chem A 8(31):15853–15863. https://doi.org/10.1039/D0TA02317E

    Article  CAS  Google Scholar 

  32. Xie Y, Wang XQ, Tong WH et al (2020) FexP/biochar composites induced oxygen-driven Fenton-like reaction for sulfamethoxazole removal: performance and reaction mechanism. Chem Eng J 396:125321. https://doi.org/10.1016/j.cej.2020.125321

    Article  CAS  Google Scholar 

  33. Xu XH, Guo KW, Sun JK, Yu XY, Miao XY, Lu WB, Jiao LF (2024) Interface engineering of Mo-doped Ni2P/FexP-V multiheterostructure for efficient dual-pH hydrogen evolution and overall water splitting. Adv Funct Mater. https://doi.org/10.1002/adfm.202400397

    Article  Google Scholar 

  34. Li XC, Huang L, Fang HW, Gj He, Reible D, Wang C (2019) Immobilization of phosphorus in sediments by nano zero-valent iron (nZVI) from the view of mineral composition. Sci Total Environ 694:133695. https://doi.org/10.1016/j.scitotenv.2019.133695

    Article  CAS  PubMed  Google Scholar 

  35. He YH, Lin H, Dong YB et al (2018) Zeolite supported Fe/Ni bimetallic nanoparticles for simultaneous removal of nitrate and phosphate: synergistic effect and mechanism. Chem Eng J 347:669–681. https://doi.org/10.1016/j.cej.2018.04.088

    Article  CAS  Google Scholar 

  36. Xu T, Liang J, Wang YY et al (2022) Enhancing electrocatalytic N2–to–NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays. Nano Res 15(2):1039–1046. https://doi.org/10.1007/s1227-021-3592-8

    Article  CAS  Google Scholar 

  37. Chang K, Tran DT, Wang J et al (2023) Triphasic Ni2P−Fe2P−CoP heterostructure interfaces for efficient overall water splitting powered by solar energy. Appl Catal B-Environ 338:123016. https://doi.org/10.1016/j.apcatb.2023.123016

    Article  CAS  Google Scholar 

  38. Tt H, Liu ZF, Zheng XR, Zhang J, Yan L (2017) Efficient photoelectrochemical water splitting over Co3O4 and Co3O4/Ag composite structure. Appl Catal B-Environ 202:454–459. https://doi.org/10.1016/j.apcatb.2016.09.053

    Article  CAS  Google Scholar 

  39. Li JC, Li M, An N, Zhang S, Song QA, Yang YL, Liu X (2021) Atomically dispersed Fe atoms anchored on S and N-codoped carbon for efficient electrochemical denitrification. P Natl Acad Sci USA 118(33):e2105628118. https://doi.org/10.1073/pnas.2105628118

    Article  CAS  Google Scholar 

  40. Xue YH, Yu QH, Ma Q et al (2022) Electrocatalytic hydrogenation boosts reduction of nitrate to ammonia over single-atom Cu with Cu(I)–N3C1 Sites. Environ Sci Technol 56(20):14797–14807. https://doi.org/10.1021/acs.est.2c04456

    Article  CAS  PubMed  Google Scholar 

  41. Chen FY, Wu ZY, Gupta S et al (2022) Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat Nanotechnol 17(7):759–767. https://doi.org/10.1038/s41565-022-01121-4

    Article  CAS  PubMed  Google Scholar 

  42. Chen GF, Yuan YF, Jiang HF et al (2020) Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. Nat Energy 5(8):605–613. https://doi.org/10.1038/s41560-020-0654-1

    Article  CAS  Google Scholar 

  43. Zhang YZ, Chen X, Wang WL, Yin LF, Crittenden JC (2022) Electrocatalytic nitrate reduction to ammonia on defective Au1Cu (111) single-atom alloys. Appl Catal B-Environ 310:121346. https://doi.org/10.1016/j.apcatb.2022.121346

    Article  CAS  Google Scholar 

  44. Guo YG, Cai XY, Shen SY, Wang GF, Zhang JL (2021) Computational prediction and experimental evaluation of nitrate reduction to ammonia on rhodium. J Catal 402:1–9. https://doi.org/10.1016/j.jcat.2021.08.016

    Article  CAS  Google Scholar 

  45. Jia RR, Wang YT, Wang CH, Ling YF, Yu YF, Zhang B (2020) Boosting slective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal 10(6):3533–3540. https://doi.org/10.1021/acscatal.9b05260

    Article  CAS  Google Scholar 

  46. Fu XB, Zhao XG, Hu XB et al (2020) Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets. Appl Mater Today 19:100620. https://doi.org/10.1016/j.apmt.2020.100620

    Article  Google Scholar 

  47. Ren TL, Ren KL, Wang MZ et al (2021) Concave-convex surface oxide layers over copper nanowires boost electrochemical nitrate-to-ammonia conversion. Chem Eng J 426:130759. https://doi.org/10.1016/j.cej.2021.130759

    Article  CAS  Google Scholar 

  48. Wang J, Feng T, Chen JX et al (2021) Electrocatalytic nitrate/nitrite reduction to ammonia synthesis using metal nanocatalysts and bio-inspired metalloenzymes. Nano Energy 86:106088. https://doi.org/10.1016/j.nanoen.2021.106088

    Article  CAS  Google Scholar 

  49. Garcia Segura S, Lanzarini Lopes M, Hristovski K, Westerhoff P (2018) Electrocatalytic reduction of nitrate: fundamentals to full-scale water treatment applications. Appl Catal B Environ 236:546–568. https://doi.org/10.1016/j.apcatb.2018.05.041

    Article  CAS  Google Scholar 

  50. Yao FB, Jia MC, Yang Q et al (2021) Highly selective electrochemical nitrate reduction using copper phosphide self-supported copper foam electrode: Performance, mechanism, and application. Water Res 193:116881. https://doi.org/10.1016/j.watres.2021.116881

    Article  CAS  PubMed  Google Scholar 

  51. Gao JN, Jiang B, Ni CC, Qi YF, Zhang YQ, Oturan N, Oturan MA (2019) Non-precious Co3O4–TiO2/Ti cathode based electrocatalytic nitrate rduction: preparation, performance and mechanism. Appl Catal B Environ 254:391–402. https://doi.org/10.1016/j.apcatb.2019.05.016

    Article  CAS  Google Scholar 

  52. Wang J, Deng ZL, Feng T, Jw Fan, Wx Zhang (2021) Nanoscale zero-valent iron (nZVI) encapsulated within tubular nitride carbon for highly selective and stable electrocatalytic denitrification. Chem Eng J 417:129160. https://doi.org/10.1016/j.cej.2021.129160

    Article  CAS  Google Scholar 

  53. Jiang WJ, Gu L, Li L et al (2016) Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe–Nx. J Am Chem Soc 138(10):3570–3578. https://doi.org/10.1021/jacs.6b00757

    Article  CAS  PubMed  Google Scholar 

  54. Xu BC, Chen ZX, Zhang G, Wang Y (2022) On-demand atomic hydrogen provision by exposing electron-rich cobalt sites in an open-framework structure toward superior electrocatalytic nitrate conversion to dinitrogen. Environ Sci Technol 56(1):614–623. https://doi.org/10.1021/acs.est.1c06091

    Article  CAS  PubMed  Google Scholar 

  55. Zeng HB, Zhang G, Ji QH et al (2020) pH-independent production of hydroxyl radical from atomic H*-mediated electrocatalytic H2O2 reduction: a green Fenton process without byproducts. Environ Sci Technol 54(22):14725–14731. https://doi.org/10.1021/acs.est.0c04694

    Article  CAS  PubMed  Google Scholar 

  56. Zhang J, Zhang G, Lan HC, Qu JH, Liu HJ (2021) Synergetic hydroxyl radical oxidation with atomic hydrogen reduction lowers the organochlorine conversion barrier and potentiates effective contaminant mineralization. Environ Sci Technol 55(5):3296–3304. https://doi.org/10.1021/acs.est.0c07271

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China through Grant No. 2022YFE0135700.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Shaoxia Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33370 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, M., He, T., Han, S. et al. Highly selective electrochemical reduction of nitrate-to-ammonia using iron phosphide self-supported electrode. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09966-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-09966-x

Navigation