Skip to main content
Log in

Effect of Al on the microstructure, mechanical properties, and wear resistance of TiVZrNbAlx alloys

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the microstructure, mechanical, and tribological properties of (Ti42V28Zr15Nb15)100-xAlx lightweight refractory high-entropy alloys (LRHEAs) were systematically investigated. The results show that the single BCC solid solution structure of LHEAs is maintained after the addition of Al elements, and no other phases are formed. The addition of Al elements to the alloys can be reduce density, improve properties, and enhance wear resistance. While the hardness of the alloy increased from about ~ 352 HV to ~ 430 HV, the tensile ductility decreased significantly. The main reason for the increase in hardness is the strong bonding between aluminum atoms and other atoms. On the other hand, the severe impairment of the tensile properties may be due to the decrease in GNDs. Although the addition of Al helps to reduce the coefficient of friction, the wear rate of the alloy increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Miao J, Liang H, Zhang A, He J, Meng J, Lu Y (2021) Tribological behavior of an AlCoCrFeNi2.1 eutectic high entropy alloy sliding against different counterfaces. Tribol Inter 153:106599. https://doi.org/10.1016/j.triboint.2020.106599

    Article  CAS  Google Scholar 

  2. Sadeghilaridjani M, Pole M, Jha S, Muskeri S, Ghodki N, Mukherjee S (2021) Deformation and tribological behavior of ductile refractory high-entropy alloys. Wear 478–479:203916. https://doi.org/10.1016/j.wear.2021.203916

    Article  CAS  Google Scholar 

  3. Yu Y, He F, Qiao ZH, Wang ZJ, Liu WM, Yang J (2019) Effects of temperature and microstructure on the triblogical properties of CoCrFeNiNb eutectic high entropy alloys. J Alloy Compd 775:1376–1385. https://doi.org/10.1016/j.jallcom.2018.10.138

    Article  CAS  Google Scholar 

  4. Zhao YL, Yang T, Li YR, Fan L, Han B, Jiao ZB, Chen D, Liu CT, Kai JJ (2020) Superior high-temperature properties and deformation-induced planar faults in a novel L12-strengthened high-entropy alloy. Acta Mater 188:517–527. https://doi.org/10.1016/j.actamat.2020.02.028

    Article  CAS  Google Scholar 

  5. Nguyen NT, Asghari-Rad P, Sathiyamoorthi P, Zargaran A, Lee CS, Kim HS (2020) Ultrahigh high-strain-rate superplasticity in a nanostructured high-entropy alloy. Nat Commun 11(1):2736. https://doi.org/10.1038/s41467-022-28422-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang L, Cheng Z, Zhu W, Zhao C, Ren F (2021) Significant reduction in friction and wear of a high-entropy alloy via the formation of self-organized nanolayered structure. J Mater Sci Technol 73:1–8. https://doi.org/10.1016/j.jmst.2020.08.065

    Article  CAS  Google Scholar 

  7. Jia Y, Ren C, Wu S, Mu Y, Xu L, Jia Y, Yan W, Yi J, Wang G (2023) Multistage strain-hardening behavior of ultrastrong and ductile lightweight refractory complex-concentrated alloys. J Mater Sci Technol 149:73–87. https://doi.org/10.1016/j.jmst.2022.12.011

    Article  CAS  Google Scholar 

  8. Youssef KM, Zaddach AJ, Niu CN, Irving DL, Koch CC (2015) A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater Res Lett 3(2):95–99. https://doi.org/10.1080/21663831.2014.985855

    Article  CAS  Google Scholar 

  9. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6(5):299–303. https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  10. Cantor B, Chang ITH, Knight P, Vincent AJB (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 375–377:213–218. https://doi.org/10.1016/j.msea.2003.10.257

    Article  CAS  Google Scholar 

  11. Chuang MH, Tsai MH, Wang WR, Lin SJ, Yeh JW (2011) Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater 59(16):6308–6317. https://doi.org/10.1016/j.actamat.2011.06.041

    Article  CAS  Google Scholar 

  12. Zhang M, Jiang Z, Niu M, Chen H, Zhang X (2023) Effect of interstitial carbides on tribological properties of Co21Cr21Fe21Ni21V14.5C1.5 high entropy alloy at elevated temperature. Tribol Inter 187:108760. https://doi.org/10.1016/j.triboint.2023.108760

    Article  CAS  Google Scholar 

  13. Fan L, Yang T, Zhao Y, Luan J, Zhou G, Wang H, Jiao Z, Liu CT (2020) Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures. Nat Commun 11(1):6240. https://doi.org/10.1038/s41467-020-20109-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Senkov ON, Wilks GB, Miracle DB, Chuang CP, Liaw PK (2010) Refractory high-entropy alloys. Intermetallics 18(9):1758–1765. https://doi.org/10.1016/j.intermet.2010.05.014

    Article  CAS  Google Scholar 

  15. Xiao J-K, Xu G-M, Chen J, Rusinov P, Zhang C (2024) Tribocorrosion behavior of TiZrHfNb-based refractory high-entropy alloys. Wear 536–537:205158. https://doi.org/10.1016/j.wear.2023.205158

    Article  CAS  Google Scholar 

  16. Ye YX, Liu CZ, Wang H, Nieh TG (2018) Friction and wear behavior of a single-phase equiatomic TiZrHfNb high-entropy alloy studied using a nanoscratch technique. Acta Mater 147:78–89. https://doi.org/10.1016/j.actamat.2018.01.014

    Article  CAS  Google Scholar 

  17. Senkov ON, Scott JM, Senkova SV, Meisenkothen F, Miracle DB, Woodward CF (2012) Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J Mater Sci 47(9):4062–4074. https://doi.org/10.1007/s10853-012-6260-2

    Article  CAS  Google Scholar 

  18. Dong FY, Yuan Y, Li WD, Zhang Y, Liaw PK, Yuan XG, Huang HJ (2020) Hot deformation behavior and processing maps of an equiatomic MoNbHfZrTi refractory high entropy alloy. Intermetallics 126:106921. https://doi.org/10.1016/j.intermet.2020.106921

    Article  CAS  Google Scholar 

  19. Todai M, Nagase T, Hori T, Matsugaki A, Sekita A, Nakano T (2017) Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials. Scripta Mater 129:65–68. https://doi.org/10.1016/j.scriptamat.2016.10.028

    Article  CAS  Google Scholar 

  20. Wu YD, Cai YH, Chen XH, Wang T, Si JJ, Wang L, Wang YD, Hui XD (2015) Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys. Mater Des 83:651–660. https://doi.org/10.1016/j.matdes.2015.06.072

    Article  CAS  Google Scholar 

  21. Juan CC, Tsai MH, Tsai CW, Lin CM, Wang WR, Yang CC, Chen SK, Lin SJ, Yeh JW (2015) Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys. Intermetallics 62:76–83. https://doi.org/10.1016/j.intermet.2015.03.013

    Article  CAS  Google Scholar 

  22. Couzinié JP, Senkov ON, Miracle DB, Dirras G (2018) Comprehensive data compilation on the mechanical properties of refractory high-entropy alloys. Data Brief 21:1622–1641. https://doi.org/10.1016/j.dib.2018.10.071

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bhardwaj V, Zhou Q, Zhang F, Han W, Du Y, Hua K, Wang H (2021) Effect of Al addition on the microstructure, mechanical and wear properties of TiZrNbHf refractory high entropy alloys. Tribol Int 160:107031. https://doi.org/10.1016/j.triboint.2021.107031

    Article  CAS  Google Scholar 

  24. Pei X, Du Y, Hao X, Wang H, Zhou Q, Wu H, Wang H (2022) Microstructure and tribological properties of TiZrV0.5Nb0.5Al refractory high entropy alloys at elevated temperature. Wear 488–489:204166. https://doi.org/10.1016/j.wear.2021.204166

    Article  CAS  Google Scholar 

  25. Wu M, Chen K, Xu Z, Li DY (2020) Effect of Ti addition on the sliding wear behavior of AlCrFeCoNi high-entropy alloy. Wear 462–463:203493. https://doi.org/10.1016/j.wear.2020.203493

    Article  CAS  Google Scholar 

  26. Nguyen C, Tieu AK, Deng G, Wexler D, Tran B, Vo TD (2022) Study of wear and friction properties of a Co-free CrFeNiAl04Ti02 high entropy alloy from 600 to 950 °C. Tribol Int 169:107453. https://doi.org/10.1016/j.triboint.2022.107453

    Article  CAS  Google Scholar 

  27. Joseph J, Haghdadi N, Shamlaye K, Hodgson P, Barnett M, Fabijanic D (2019) The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures. Wear 428–429:32–44. https://doi.org/10.1016/j.wear.2019.03.002

    Article  CAS  Google Scholar 

  28. Stepanov ND, Yurchenko NY, Skibin DV, Tikhonovsky MA, Salishchev GA (2015) Structure and mechanical properties of the AlCrxNbTiV (x=0, 0.5, 1, 1.5) high entropy alloys. J Alloys Compd 652:266–280. https://doi.org/10.1016/j.jallcom.2015.08.224

    Article  CAS  Google Scholar 

  29. Wang C, Liang C, Yang M, Huang C, Yao Z, Qiu B, Zhang K, Xie Y, Liang M, Liu W, Yang J, Zhou S (2022) Development of the γ’ phase strengthened high-temperature high-entropy alloys with excellent mechanical properties. Mater Des 221:110940. https://doi.org/10.1016/j.matdes.2022.110940

    Article  CAS  Google Scholar 

  30. Calcagnotto M, Ponge D, Demir E, Raabe D (2010) Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mat Sci Eng a Struct 527(10–11):2738–2746. https://doi.org/10.1016/j.msea.2010.01.004

    Article  CAS  Google Scholar 

  31. Liu YF, Cao Y, Mao QZ, Zhou H, Zhao YH, Jiang W, Liu Y, Wang JT, You ZS, Zhu YT (2020) Critical microstructures and defects in heterostructured materials and their effects on mechanical properties. Acta Mater 189:129–144. https://doi.org/10.1016/j.actamat.2020.03.001

    Article  CAS  Google Scholar 

  32. Gong BS, Liu ZJ, Wang YL, Zhang ZJ, Zhang P, Jiang HC, Rong LJ, Zhang ZF (2019) Improving the fatigue strength of A7N01 aluminum alloy by adjusting Si content. Mater Sci Eng, A 742:15–22. https://doi.org/10.1016/j.msea.2018.10.085

    Article  CAS  Google Scholar 

  33. Buha J, Lumley RN, Crosky AG, Hono K (2007) Secondary precipitation in an Al–Mg–Si–Cu alloy. Acta Mater 55(9):3015–3024. https://doi.org/10.1016/j.actamat.2007.01.006

    Article  CAS  Google Scholar 

  34. Liang CJ, Wang CL, Liang ML, Xie YG, Liu WJ, Yang JJ, Li X, Liu C, Zhou SF (2022) Effect of different durations on the microstructure and tribological behavior of (Co1.5FeNi)90Ti6Al4 high entropy alloy. Vacuum 195:110677. https://doi.org/10.1016/j.vacuum.2021.110677

    Article  CAS  Google Scholar 

  35. Bocchini PJ, Sudbrack CK, Noebe RD, Dunand DC, Seidman DN (2017) Effects of titanium substitutions for aluminum and tungsten in Co–10Ni–9Al–9W (at.%) superalloys. Mater Sci Eng A 705:122–132. https://doi.org/10.1016/j.msea.2017.08.034

    Article  CAS  Google Scholar 

  36. Diao G, He A, Li DY, Wu M, Xu Z, Li W, Li QY (2022) Tune a highly ductile AlCrFe2Ni4 alloy by Ti addition for desired high mechanical strength. Mater Sci Eng A 856:143910. https://doi.org/10.1016/j.msea.2022.143910

    Article  CAS  Google Scholar 

  37. Cui P, Liu Y, Zhou F, Lai Z, Zhu J (2022) Enhancing high temperature mechanical properties via modulating B2 phase with Al contents in FeCrNiAlx (x = 0.63,0.71,0.77) high entropy alloys. J Alloys Compd 903:163883. https://doi.org/10.1016/j.jallcom.2022.163883

    Article  CAS  Google Scholar 

  38. Panina ES, Yurchenko NY, Zherebtsov SV, Tikhonovsky MA, Mishunin MV, Stepanov ND (2020) Structures and mechanical properties of Ti–Nb–Cr–V–Ni–Al refractory high entropy alloys. Mater Sci Eng: a 786:139409. https://doi.org/10.1016/j.msea.2020.139409

    Article  CAS  Google Scholar 

  39. Wang H, Chen W, Chu C, Fu Z, Jiang Z, Yang X, Lavernia EJ (2023) Microstructural evolution and mechanical behavior of novel Ti1.6ZrNbAl lightweight refractory high-entropy alloys containing BCC/B2 phases. Mater Sci Eng: a 885:145661. https://doi.org/10.1016/j.msea.2023.145661

    Article  CAS  Google Scholar 

  40. Jiang W, Wang Y, Wang X, Jiang B, Ma T, Kang H, Zhu D (2023) Effect of Al on microstructure and mechanical properties of lightweight AlxNb0.5TiV2Zr0.5 refractory high entropy alloys. Mater Sci Eng: a 865:144628. https://doi.org/10.1016/j.msea.2023.144628

    Article  CAS  Google Scholar 

  41. Liang NN, Xu RR, Wu GZ, Gao XZ, Zhao YH (2022) High thermal stability of nanocrystalline FeNi2CoMo0.2V0.5 high-entropy alloy by twin boundary and sluggish diffusion. Mater Sci Eng: a 848:143399. https://doi.org/10.1016/j.msea.2022.143399

    Article  CAS  Google Scholar 

  42. Geng Y, Cheng J, Tan H, Sun Q, Chen J, Zhu S, Tieu AK, Yang J, Liu W (2023) A (CrFeNi) 83 (AlTi) 17 high-entropy alloy matrix solid-lubricating composite with exceptional tribological properties over a wide temperature range. J Mater Sci Technol 153:75–91. https://doi.org/10.1016/j.jmst.2022.12.065

    Article  CAS  Google Scholar 

  43. Cunhong Y, Hua H, Jiaqing Q, Baochao Z, Xulong A, Yanliang Y (2023) Microstructure, mechanical and tribological properties of thermomechanical processed (CoNiCr0.5)95Al Ti high-entropy alloys. J Mater Res Technol 25:1761–1773. https://doi.org/10.1016/j.jmrt.2023.06.061

    Article  CAS  Google Scholar 

  44. Yang X, Zhang Y (2012) Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys 132(2–3):233–238. https://doi.org/10.1016/j.matchemphys.2011.11.021

    Article  CAS  Google Scholar 

  45. Guo S, Liu CT (2011) Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog Nat Sci Mater 21(6):433–446. https://doi.org/10.1016/S1002-0071(12)60080-X

    Article  Google Scholar 

  46. Li X, Li H, Li Q, Jin C, Hua K, Wang H (2022) The determining role of Al addition on tribology properties and oxidation behavior at elevated temperatures of TiZrHfNb refractory high-entropy alloy. Mater Charact 189:111921. https://doi.org/10.1016/j.matchar.2022.111921

    Article  CAS  Google Scholar 

  47. Senkov ON, Senkova SV, Woodward C (2014) Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater 68:214–228. https://doi.org/10.1016/j.actamat.2014.01.029

    Article  CAS  Google Scholar 

  48. Egami T (2007) Glass transition and viscosity in metallic glasses and liquids. J Alloy Compd 434:110–114. https://doi.org/10.1016/j.jallcom.2006.08.252

    Article  CAS  Google Scholar 

  49. Zhou YJ, Zhang Y, Wang FJ, Chen GL (2008) Phase transformation induced by lattice distortion in multiprincipal component CoCrFeNiCuAl solid-solution alloys. Appl Phys Lett 92(24):241917. https://doi.org/10.1063/1.2938690

    Article  CAS  Google Scholar 

  50. Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP (2014) Microstructures and properties of high-entropy alloys. Prog Mater Sci 61:1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001

    Article  CAS  Google Scholar 

  51. Xiao Y, Kozak R, Haché MJR, Steurer W, Spolenak R, Wheeler JM, Zou Y (2020) Micro-compression studies of face-centered cubic and body-centered cubic high-entropy alloys: size-dependent strength, strain rate sensitivity, and activation volumes. Mater Sci Eng A 790:139429. https://doi.org/10.1016/j.msea.2020.139429

    Article  CAS  Google Scholar 

  52. Liang C, Wang C, Zhang K, Tan H, Liang M, Xie Y, Liu W, Yang J, Zhou S (2022) Mechanical and tribological properties of (FeCoNi)88–x(AlTi)12Mox high-entropy alloys. Int J Refract Metal Hard Mater 105:105845. https://doi.org/10.1016/j.ijrmhm.2022.105845

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2016YFB0300901), National Science Foundation of China (51705539, 52161011), Natural Science Foundation of Guangxi Province (2023GXNSFDA026046), Central Guiling Local Science and Technology Development Fund Projects (ZY23055005), Scientific Research and Technology Development Program of Guilin (20220110-3, 2020010903).

Author information

Authors and Affiliations

Authors

Contributions

Chaojie Liang contributed to the conceptualization, methodology, validation, formal analysis, investigation, writing—original draft, and visualization. Yunlai Deng contributed to the conceptualization, investigation, Writing—review and editing, and funding acquisition; Yuankang Xie contributed to the resources and project administration. Chenglei Wang contributed to the methodology, resources, and funding acquisition.

Corresponding authors

Correspondence to Yunlai Deng or Chenglei Wang.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Nima Haghdadi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, C., Deng, Y., Xie, Y. et al. Effect of Al on the microstructure, mechanical properties, and wear resistance of TiVZrNbAlx alloys. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09958-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-09958-x

Navigation