Skip to main content
Log in

Development of full-color fluorescent wood composites based on organic dyes

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Encapsulating luminescent dyes within delignified wood templates is a promising strategy for developing wood-based composite luminescent materials. However, the interactions between the nanopore structure of delignified wood, the loading efficiency of luminescent dyes, and the resulting luminescent properties of these composites remains unclear. In this study, we developed a series of wood-based luminescent composites using delignified wood templates as a dispersion platform for encapsulating classical organic fluorescent dyes. By extensively exploring the interrelationships among the delignification degree, organic dye loading efficiency, and luminescence properties, we uncovered the influence of delignified wood templates on the luminescent characteristics of wood-based luminescent composites. Furthermore, we demonstrated that the luminescent color could be controlled by encapsulating varying proportions of blue-, green- and red-fluorescent dyes, thus enabling the achievement of full-color fluorescence in wood-based luminescent composites. These wood-based luminescent composites hold great promise for applications in data anti-counterfeiting and light-emitting diode technology, offering valuable theoretical support for the development and utilization of innovative wood-based luminescent composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Di D, Romanov AS, Yang L, Richter JM, Rivett JPH, Jones S, Thomas TH, Abdi Jalebi M, Friend RH, Linnolahti M, Bochmann M, Credgington D (2017) High-performance light-emitting diodes based on carbene-metal-amides. Science 356:159–163. https://doi.org/10.1126/science.aah4345

    Article  CAS  PubMed  Google Scholar 

  2. Joo WJ, Brongersma ML (2022) Creating the ultimate virtual reality display. Science 377:1376–1378. https://doi.org/10.1126/science.abq7011

    Article  CAS  PubMed  Google Scholar 

  3. Chen Q, Wu J, Ou X, Huang B, Almutlaq J, Zhumekenov AA, Guan X, Han S, Liang L, Yi Z, Li J, Xie X, Wang Y, Li Y, Fan D, Teh DBL, All AH, Mohammed OF, Bakr OM, Wu T, Bettinelli M, Yang H, Huang W, Liu X (2018) All-inorganic perovskite nanocrystal scintillators. Nature 561:88–93. https://doi.org/10.1038/s41586-018-0451-1

    Article  CAS  PubMed  Google Scholar 

  4. Hou J, Chen P, Shukla A, Krajnc A, Wang T, Li X, Doasa R, Tizei LHG, Chan B, Johnstone DN, Lin R, Schülli TU, Martens I, Appadoo D, Ari MS, Wang Z, Wei T, Lo SC, Lu M, Li S, Namdas EB, Mali G, Cheetham AK, Collins SM, Chen V, Wang L, Bennett TD (2021) Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses. Science 374:621–625. https://doi.org/10.1126/science.abf4460

    Article  CAS  PubMed  Google Scholar 

  5. Hou X, Ke C, Bruns CJ, McGonigal PR, Pettman RB, Stoddart JF (2015) Tunable solid-state fluorescent materials for supramolecular encryption. Nat Commun 6:6884. https://doi.org/10.1038/ncomms7884

    Article  PubMed  Google Scholar 

  6. Sutula M, Christen I, Bersin E, Walsh MP, Chen KC, Mallek J, Melville A, Titze M, Bielejec ES, Hamilton S, Braje D, Dixon PB, Englund DR (2023) Large-scale optical characterization of solid-state quantum emitters. Nat Mater. https://doi.org/10.1038/s41563-023-01644-8

    Article  PubMed  Google Scholar 

  7. Wang Z, Horseman T, Straub AP, Yip NY, Li D, Elimelech M, Lin S (2019) Pathways and challenges for efficient solar-thermal desalination. Sci Adv 5:eaax0763. https://doi.org/10.1126/sciadv.aax0763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang H, Ai L, Song H, Song Z, Yong X, Qu S, Lu S (2023) Innovations in the solid-state fluorescence of carbon dots: strategies, optical manipulations, and applications. Adv Funct Mater 33:2303756. https://doi.org/10.1002/adfm.202303756

    Article  CAS  Google Scholar 

  9. Xu Y, Xu R, Wang Z, Zhou Y, Shen Q, Ji W, Dang D, Meng L, Tang BZ (2021) Recent advances in luminescent materials for super-resolution imaging via stimulated emission depletion nanoscopy. Chem Soc Rev 50:667–690. https://doi.org/10.1039/D0CS00676A

    Article  CAS  PubMed  Google Scholar 

  10. Cao X, Gao A, Hou JT, Yi T (2021) Fluorescent supramolecular self-assembly gels and their application as sensors: a review. Coord Chem Rev 434:213792. https://doi.org/10.1016/j.ccr.2021.213792

    Article  CAS  Google Scholar 

  11. Gao J, Xia Z, Ding Q, Liu Y, Yan P, Hu Y, Wang L, Luo W, Fan Y, Jiang W (2023) Cold sintering of highly transparent calcium fluoride nanoceramic as a universal platform for high-power lighting. Adv Funct Mater 33:2302088. https://doi.org/10.1002/adfm.202302088

    Article  CAS  Google Scholar 

  12. Guo T, Lin Y, Pan D, Zhang X, Zhu W, Cai XM, Huang G, Wang H, Xu D, Kühn FE, Zhang B, Zhang T (2023) Towards bioresource-based aggregation-induced emission luminogens from lignin β-O-4 motifs as renewable resources. Nat Commun 14:6076. https://doi.org/10.1038/s41467-023-41681-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Han B, Yan Q, Xin Z, Liu Q, Li D, Wang J, He G (2022) Color-tunable and bright nonconjugated fluorescent polymer dots and fast photodegradation of dyes under visible light. Aggregate 3:e147. https://doi.org/10.1002/agt2.147

    Article  CAS  Google Scholar 

  14. Ma Y, Yao J, Liu Q, Han T, Zhao J, Ma X, Tong Y, Jin G, Qu K, Li B, Xu F (2020) Liquid bandage harvests robust adhesive, hemostatic, and antibacterial performances as a first-aid tissue adhesive. Adv Funct Mater 30:2001820. https://doi.org/10.1002/adfm.202001820

    Article  CAS  Google Scholar 

  15. Tian T, Fang Y, Wang W, Yang M, Tan Y, Xu C, Zhang S, Chen Y, Xu M, Cai B, Wu WQ (2023) Durable organic nonlinear optical membranes for thermotolerant lightings and in vivo bioimaging. Nat Commun 14:4429. https://doi.org/10.1038/s41467-023-40168-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tian W, Zhang J, Yu J, Wu J, Zhang J, He J, Wang F (2018) Phototunable full-color emission of cellulose-based dynamic fluorescent materials. Adv Funct Mater 28:1703548. https://doi.org/10.1002/adfm.201703548

    Article  CAS  Google Scholar 

  17. Sang M, Cho M, Lim S, Min IS, Han Y, Lee C, Shin J, Yoon K, Yeo WH, Lee T, Won SM, Jung Y, Heo YJ, Yu KJ (2023) Fluorescent-based biodegradable microneedle sensor array for tether-free continuous glucose monitoring with smartphone application. Sci Adv 9:eadh1765. https://doi.org/10.1126/sciadv.adh1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li W, Chen Z, Yu H, Li J, Liu S (2020) Wood-derived carbon materials and light-emitting materials. Adv Mater 33:2000596. https://doi.org/10.1002/adma.202000596

    Article  CAS  Google Scholar 

  19. Gao X, Gong X, Nguyen T-T, Du W, Chen X, Song Z, Chai R, Guo M (2019) Luminescent materials comprised of wood-based carbon quantum dots adsorbed on a Ce0.7Zr0.3O2 solid solution: synthesis, photoluminescence properties, and applications in light-emitting diode devices. J Mater Sci 54:14469–14482. https://doi.org/10.1007/s10853-019-03912-y

    Article  CAS  Google Scholar 

  20. Kaschuk JJ, Al Haj Y, Rojas OJ, Miettunen K, Abitbol T, Vapaavuori J (2022) Plant-based structures as an opportunity to engineer optical functions in next-generation light management. Adv Mater 34:2104473. https://doi.org/10.1002/adma.202104473

    Article  CAS  Google Scholar 

  21. Li W, Chen Z, Yu H, Li J, Liu S (2021) Wood-derived carbon materials and light-emitting materials. Adv Mater 33:2000596. https://doi.org/10.1002/adma.202000596

    Article  CAS  Google Scholar 

  22. Li Y, Vasileva E, Sychugov I, Popov S, Berglund L (2018) Optically transparent wood: recent progress, opportunities, and challenges. Adv Opt Mater 6:1800059. https://doi.org/10.1002/adom.201800059

    Article  CAS  Google Scholar 

  23. Li Y, Yu S, Veinot JGC, Linnros J, Berglund L, Sychugov I (2017) Luminescent transparent wood. Adv Opt Mater 5:1600834. https://doi.org/10.1002/adom.201600834

    Article  CAS  Google Scholar 

  24. Wang P, Zheng D, Liu S, Luo M, Li J, Shen S, Li S, Zhu L, Chen Z (2021) Producing long afterglow by cellulose confinement effect: a wood-inspired design for sustainable phosphorescent materials. Carbon 171:946–952. https://doi.org/10.1016/j.carbon.2020.09.060

    Article  CAS  Google Scholar 

  25. Guo X, Daka S, Fan M-Z, Lin X-X, Sun W-S (2023) Reversibly thermochromic wood. J Mater Sci 58:2188–2197. https://doi.org/10.1007/s10853-022-08042-6

    Article  CAS  Google Scholar 

  26. Chen C, Kuang Y, Zhu S, Burgert I, Keplinger T, Gong A, Li T, Berglund L, Eichhorn SJ, Hu L (2020) Structure-property-function relationships of natural and engineered wood. Nat Rev Mater 5:642–666. https://doi.org/10.1038/s41578-020-0195-z

    Article  CAS  Google Scholar 

  27. Fanru K, Rui H, Di W, Jian L (2019) Preparation and luminescence properties of europium(III) ternary complex-modified poplar wood-based materials. Mater Res 22:e20180712. https://doi.org/10.1590/1980-5373-mr-2018-0712

    Article  CAS  Google Scholar 

  28. Li M, Huang R, Fu Z, Wang D, Wang C, Li J (2021) Multi-functional luminescent coating for wood fabric based on silica sol-gel approach. Polymers 13:127. https://doi.org/10.3390/polym13010127

    Article  CAS  Google Scholar 

  29. Li J, Chen C, Zhu JY, Ragauskas AJ, Hu L (2021) In situ wood delignification toward sustainable applications. Acc Mater Res 2:606–620. https://doi.org/10.1021/accountsmr.1c00075

    Article  CAS  Google Scholar 

  30. Chen C, Hu L (2021) Nanoscale ion regulation in wood-based structures and their device applications. Adv Mater 33:2002890. https://doi.org/10.1002/adma.202002890

    Article  CAS  Google Scholar 

  31. Huang D, Wu J, Chen C, Fu X, Brozena AH, Zhang Y, Gu P, Li C, Yuan C, Ge H, Lu M, Zhu M, Hu L, Chen Y (2019) Precision imprinted nanostructural wood. Adv Mater 31:1903270. https://doi.org/10.1002/adma.201903270

    Article  CAS  Google Scholar 

  32. Xia Q, Chen C, Yao Y, He S, Wang X, Li J, Gao J, Gan W, Jiang B, Cui M, Hu L (2021) In situ lignin modification toward photonic wood. Adv Mater 33:202001588. https://doi.org/10.1002/adma.202001588

    Article  CAS  Google Scholar 

  33. Al-Qahtani S, Aljuhani E, Felaly R, Alkhamis K, Alkabli J, Munshi A, El-Metwaly N (2021) Development of photoluminescent translucent wood toward photochromic smart window applications. Ind Eng Chem Res 60:8340–8350. https://doi.org/10.1021/acs.iecr.1c01603

    Article  CAS  Google Scholar 

  34. Gong X, Gao X, Du W, Zhang H, Zhang S, Nguyen TT, Guo M (2019) Wood powder-derived quantum dots for CeO2 photocatalytic and anti-counterfeit applications. Opt Mater 96:109302. https://doi.org/10.1016/j.optmat.2019.109302

    Article  CAS  Google Scholar 

  35. Li Q, Qin J, Li S, Zhao X, Hu Y (2020) Transparent fiber wood composite materials containing long afterglow as lighting equipment. J Appl Polym Sci 137:49203. https://doi.org/10.1002/app.49203

    Article  CAS  Google Scholar 

  36. Liu S, Tso CY, Lee HH, Du YW, Yu KM, Feng SP, Huang B (2021) Self-densified optically transparent VO2 thermochromic wood film for smart windows. ACS Appl Mater Interfaces 13:22495–22504. https://doi.org/10.1021/acsami.1c03803

    Article  CAS  PubMed  Google Scholar 

  37. Liu Y, Lu C, Bian S, Hu K, Zheng K, Sun Q (2022) Reversible photo-responsive smart wood with resistant to extreme weather. J Mater Sci 57:3337–3347. https://doi.org/10.1007/s10853-021-06756-7

    Article  CAS  Google Scholar 

  38. Zou M, Chen Y, Chang L, Cheng X, Gao L, Guo W, Ren Y, Shupin L, Tang Q (2022) Toward 90 μm superthin transparent wood film impregnated with quantum dots for color-converting materials. ACS Sustainable Chem Eng 10:2097–2106. https://doi.org/10.1021/acssuschemeng.1c07013

    Article  CAS  Google Scholar 

  39. Zhang C, Lin T, Yin X, Wu X, Wei X (2022) Preparation of transparent wood containing carbon dots for application in the field of white-LED. J Wood Chem Technol 42:331–341. https://doi.org/10.1080/02773813.2022.2085749

    Article  CAS  Google Scholar 

  40. Zhang L, Wang A, Zhu T, Chen Z, Wu Y, Gao Y (2020) Transparent wood composites fabricated by impregnation of epoxy resin and W-doped VO2 nanoparticles for application in energy-saving windows. ACS Appl Mater Interfaces 12:34777–34783. https://doi.org/10.1021/acsami.0c06494

    Article  CAS  PubMed  Google Scholar 

  41. Zheng K, Wu J, Huang M, Zhang F, Xu J (2022) Reversible photo- thermal-, and pH-responsive functionalized wood with fluorescence emission. Materials 15:1229. https://doi.org/10.3390/ma15031229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Park SH, Kwon N, Lee JH, Yoon J, Shin I (2020) Synthetic ratiometric fluorescent probes for detection of ions. Chem Soc Rev 49:143–179. https://doi.org/10.1039/C9CS00243J

    Article  CAS  PubMed  Google Scholar 

  43. Yuan L, Lin W, Zheng K, He L, Huang W (2013) Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem Soc Rev 42:622–661. https://doi.org/10.1039/C2CS35313J

    Article  CAS  PubMed  Google Scholar 

  44. Yin J, Hu Y, Yoon J (2015) Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH. Chem Soc Rev 44:4619–4644. https://doi.org/10.1039/C4CS00275J

    Article  CAS  PubMed  Google Scholar 

  45. Das P, Kumar A, Chowdhury A, Mukherjee PS (2018) Aggregation-induced emission and white luminescence from a combination of π-conjugated donor-acceptor organic luminogens. ACS Omega 3:13757–13771. https://doi.org/10.1021/acsomega.8b01706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ (2014) Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater 26:5429–5479. https://doi.org/10.1002/adma.201401356

    Article  CAS  PubMed  Google Scholar 

  47. Huang Y, Xing J, Gong Q, Chen LC, Liu G, Yao C, Wang Z, Zhang HL, Chen Z, Zhang Q (2019) Reducing aggregation caused quenching effect through co-assembly of PAH chromophores and molecular barriers. Nat Commun 10:169. https://doi.org/10.1038/s41467-018-08092-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen G, Li W, Zhou T, Peng Q, Zhai D, Li H, Yuan WZ, Zhang Y, Tang BZ (2015) Conjugation-induced rigidity in twisting molecules: filling the gap between aggregation-caused quenching and aggregation-induced emission. Adv Mater 27:4496–4501. https://doi.org/10.1002/adma.201501981

    Article  CAS  PubMed  Google Scholar 

  49. Liang R, Zhu YH, Wen L, Zhao WW, Kuai BB, Zhang YL, Cai LP (2019) Exploration of effect of delignification on the mesopore structure in poplar cell wall by nitrogen absorption method. Cellulose 27:1921–1932. https://doi.org/10.1007/s10570-019-02921-z

    Article  CAS  Google Scholar 

  50. Qi X, Chen Y, Peng J, Zhang X, Qiu X, Li X, Xie X, Guo X (2023) Non-cytotoxic fluorescent wood for selective detection and efficient removal of tetracycline. Chem Eng J 466:143284. https://doi.org/10.1016/j.cej.2023.143284

    Article  CAS  Google Scholar 

  51. Yuan H, Ren T, Luo Q, Huang Y, Huang Y, Xu D, Guo X, Li X, Wu Y (2021) Fluorescent wood with non-cytotoxicity for effective adsorption and sensitive detection of heavy metals. J Hazard Mater 416:126166. https://doi.org/10.1016/j.jhazmat.2021.126166

    Article  CAS  PubMed  Google Scholar 

  52. Qi X, Chen Y, Liu M, Zhang X, Zuo Y, Ma Q, Xie X, Guo X, Wu Y (2024) Green and cost-effective: bifunctional wood for efficient adsorption and sensitive detection of Pb(II). Ind Crop Prod 210:118162. https://doi.org/10.1016/j.indcrop.2024.118162

    Article  CAS  Google Scholar 

  53. Gan J, Lin Q, Huang Y, Wu Y, Yu W (2023) Full-wood utilization strategy toward a directional luminescent solar concentrator. ACS Nano 23:23512–23523. https://doi.org/10.1021/acsnano.3c06162

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (22371124, 21971115), the Natural Science Foundation of Jiangsu Province (BK20221333, BK20231298) and the Qing Lan Project of Jiangsu Province (2022).

Author information

Authors and Affiliations

Authors

Contributions

Guiying Zhu: Conceptualization, Methodology, Data acquisition, Data curation, Validation, Writing–original draft. Weiqi Leng: Conceptualization, Methodology; Jiangtao Shi: Conceptualization, Methodology, Writing–review & editing, Project administration. Zhipeng Liu: Validation, Writing–review & editing, Supervision, Project administration, Funding acquisition.

Corresponding authors

Correspondence to Jiangtao Shi or Zhipeng Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7558 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, G., Leng, W., Shi, J. et al. Development of full-color fluorescent wood composites based on organic dyes. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09954-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-09954-1

Navigation