Skip to main content
Log in

Microstructural evolution in a precipitate-hardened (Fe0.3Ni0.3Mn0.3Cr0.1)94Ti2Al4 multi-principal element alloy during high-pressure torsion

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Multi-principal element alloys demonstrate high strength, thermal stability, and irradiation resistance, making them excellent candidate materials for applications in nuclear reactors and other harsh environments. Some studies have examined the use of high-pressure torsion to strengthen MPEAs through grain size reduction and strain hardening. However, no studies have investigated the effect of HPT on secondary phases (precipitates) within an MPEA. Two alloys, (Fe0.3Ni0.3Mn0.3Cr0.1)94Ti2Al4 containing Ni(Ti, Al) B2 phase, and CrFe σ phase, and single-phase Fe0.3Ni0.3Mn0.3Cr0.1, were fabricated by casting and heat treatment. Both alloys were then processed with HPT to study microstructural evolution. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the alloys before and after HPT processing. HPT processing produced a nanocrystalline structure in both alloys, but (Fe0.3Ni0.3Mn0.3Cr0.1)94Ti2Al4 exhibited a significantly smaller grain size and higher dislocation density than Fe0.3Ni0.3Mn0.3Cr0.1, with corresponding higher hardness. Before HPT, the (Fe0.3Ni0.3Mn0.3Cr0.1)94Ti2Al4 alloy consisted of large grain (~ 400 μm) and precipitates, including B2 of ~ 38 μm average size, B2 of ~ 0.7 μm average size, and small amounts of σ of ~ 1.5 µm average size. After HPT, the larger B2 precipitates were decreased in size and volume fraction, while the smaller B2 precipitates were completely dissolved; the σ precipitates appeared unaffected by HPT, likely due to their much higher hardness. Observation of the B2 precipitate distribution along radial distance indicates that the strain caused the precipitates to fracture at intermediate strain (γ = 125) and dissolve at high strain (γ = 280).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

Data will be made available upon request.

References

  1. Cantor B, Chang I, Knight P, Vincent A (2004) Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377:213–218

    Article  Google Scholar 

  2. Miracle DB, Senkov ON (2017) A critical review of high entropy alloys and related concepts. Acta Mater. 122:448–511

    Article  CAS  Google Scholar 

  3. Yeh J-W, Chen S-K, Lin S-J, Gan J-Y, Chin T-S, Shun T-T, Tsau CH, Chang S-Y (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5):299–303

    Article  CAS  Google Scholar 

  4. Wang XF, Zhang Y, Qiao Y, Chen GL (2007) Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics 15:357–362

    Article  CAS  Google Scholar 

  5. Fu Z, Chen W, Wen H, Zhang D, Chen Z, Zheng B, Zhou Y, Lavernia EJ (2016) Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy. Acta Mater. 107:59–71

    Article  CAS  Google Scholar 

  6. Chen J, Zhou X, Wang W, Liu B, Lu Y, Yang W, Xu D, Liu Y (2018) A review on fundamentals of high entropy alloys with promising high-temperature properties. J. Alloy Compd. 760:15–30

    Article  CAS  Google Scholar 

  7. Bai X, Fang W, Chang R, Yu H, Zhang X, Yin F (2019) Effects of Al and Ti additions on precipitation behavior and mechanical properties of Co35Cr25Fe40-xNix TRIP high entropy alloys. Mater. Sci. Eng. A 767:1-11

    Article  Google Scholar 

  8. Derimow N, MacDonald BE, Lavernia EJ, Abbaschian R (2019) Duplex phase hexagonal-cubic multi-principal element alloys with high hardness. Mater. Today Commun. 21:1-9

    Google Scholar 

  9. Lin GX, Guo RP, Shi XH, Han LA, Qiao JW (2022) Lightweight multiprincipal element alloys with excellent mechanical properties at room and cryogenic temperatures. Entropy 24(12):1-13

    Article  Google Scholar 

  10. Brechtl J, Feng R, Liaw PK, Beausir B, Jaber H, Lebedkina T, Lebyodkin M (2023) Mesoscopic-scale complexity in macroscopically-uniform plastic flow of an Al0.3CoCrFeNi high-entropy alloy. Acta Materialia 242:1-14

    Article  Google Scholar 

  11. Liu YY, Chen Z, Chen YZ, Shi JC, Wang ZY, Wang S, Liu F (2019) Effect of Al content on high temperature oxidation of AlxCoCrCuFeNi high entropy alloys (x=0, 0.5, 1, 1.5, 2). Vacuum 169:1-9

    Article  Google Scholar 

  12. Li T, Swanson OJ, Frankel GS, Gerard AY, Lu P, Saal JE, Scully JR (2019) Localized corrosion behavior of a single-phase non-equimolar high entropy alloy. Electrochim Acta 306:71–84

    Article  CAS  Google Scholar 

  13. He M-R, Wang S, Jin K, Bei H, Yasuda K, Matsumura S, Higashida K, Robertson IM (2016) Enhanced damage resistance and novel defect structure of CrFeCoNi under in situ electron irradiation. Scripta Mater. 125:5–9

    Article  CAS  Google Scholar 

  14. Lu Y, Huang H, Gao X, Ren C, Gao J, Zhang H, Zheng S, Jin Q, Zhao Y, Lu C, Wang T, Li T (2019) A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy. J. Mater. Sci. Technol. 35(3):369–373

    Article  CAS  Google Scholar 

  15. Duan J, He L, Fu Z, Hoffman A, Sridharan K, Wen H (2021) Microstructure, strength and irradiation response of an ultra-fine grained FeNiCoCr multi-principal element alloy. J. Alloy. Compd. 851:1-7

    Article  Google Scholar 

  16. Zhang F, Zhang C, Chen SL, Zhu J, Cao WS, Kattner UR (2014) An understanding of high entropy alloys from phase diagram calculations. Calphad 45:1–10

    Article  Google Scholar 

  17. Steurer W (2020) Single-phase high-entropy alloys-A critical update. Mater Charact. 162:1-17

    Article  Google Scholar 

  18. Otto F, Dlouhy A, Somsen C, Bei H, Eggeler G, George EP (2013) The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61:5743–5755

    Article  CAS  Google Scholar 

  19. He JY, Wang H, Huang HL, Xu XD, Chen MW, Wu Y, Liu XJ, Nieh TG, An K, Lu ZP (2016) A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102:187–196

    Article  CAS  Google Scholar 

  20. Wang Q, Ma Y, Jiang B, Li X, Shi Y, Dong C, Liaw PK (2016) A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0.7CoCrFe2Ni with prominent tensile properties. Scripta Mater. 120:85–89

    Article  CAS  Google Scholar 

  21. He JY, Wang H, Wu Y, Liu XJ, Mao HH, Nieh TG, Liu ZP (2016) Precipitation behavior and its effects on tensile properties of FeCoNiCr high-entropy alloys. Intermetallics 79:41–52

    Article  CAS  Google Scholar 

  22. Liang Y-J, Wang L, Wen Y, Cheng B, Wu Q, Cao T, Xiao Q, Xue Y, Sha G, Wang Y, Ren Y, Li X, Wang L, Wang F, Cai H (2018) High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys. Nat. Commun. 9(1):1-8

    Article  Google Scholar 

  23. Zhao YY, Chen HW, Lu ZP, Nieh TG (2018) Thermal Stability and coarsening of coherent particles in a precipitation-hardened (NiCoFeCr)94Ti2Al4 high-entropy alloy. Acta Mater. 147:184–194

    Article  CAS  Google Scholar 

  24. Yeli G, Chen D, Yabuuchi K, Kimura A, Liu S, Lin W, Zhao Y, Zhao S, Kai J-J (2020) The stability of γ’ precipitates in a multi-component FeCoNiCrTi0.2 alloy under elevated-temperature irradiation. J. Nucl. Mater. 540:1-12

    Article  Google Scholar 

  25. Ni S, Wang YB, Liao XZ, Alhajeri SN, Li HQ, Zhao YH, Lavernia EJ, Ringer SP, Langdon TG, Zhu YT (2011) Grain growth and dislocation density evolution in a nanocrystalline Ni–Fe alloy induced by high-pressure torsion. Scripta Mater. 64(4):327–330

    Article  CAS  Google Scholar 

  26. Dong W, Zhou Z, Zhang M, Ma Y, Yu P, Liaw PK, Li G (2019) Applications of high-pressure technology for high-entropy alloys: a review. Metals 9(8):1-16

    Article  Google Scholar 

  27. An XH, Lin QY, Sha G, Huang MX, Ringer SP, Zhu YT, Liao XZ (2016) Microstructural evolution and phase transformation in twinning-induced plasticity steel induced by high-pressure torsion. Acta Mater. 109:300–313

    Article  CAS  Google Scholar 

  28. Scheriau S, Zhang Z, Kleber S, Pippan R (2011) Deformation mechanisms of a modified 316L austenitic steel subjected to high pressure torsion. Mater. Sci. Eng. A 528(6):2776–2786

    Article  Google Scholar 

  29. Das M, Das G, Ghosh M, Wegner M, Rajnikant V, GhoshChowdhury S, Pal TK (2012) Microstructures and mechanical properties of HPT processed 6063 Al alloy. Mater. Sci. Eng. A 558:525–532

    Article  CAS  Google Scholar 

  30. Tang QH, Huang Y, Huang YY, Liao XZ, Langdon TG, Dai PQ (2015) Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing. Mater. Lett. 151:126–129

    Article  CAS  Google Scholar 

  31. Gao Z, Zhao Y, Park JM, Jeon AH, Murakami K, Komazaki SI, Tsuchiya K, Ramamurty U, Jang JI (2022) Decoupling the roles of constituent phases in the strengthening of hydrogenated nanocrystalline dual-phase high-entropy alloys. Scripta Materialia 210:114472

    Article  CAS  Google Scholar 

  32. Shahmir H, Tabachnikova E, Podolskiy A, Tikhonovsky M, Langdon TG (2018) Effect of carbon content and annealing on structure and hardness of CrFe2NiMnV0.25 high-entropy alloys processed by high-pressure torsion. J. Mater. Sci. 53(16):11813–11822

    Article  CAS  Google Scholar 

  33. Edalati P, Mohammadi A, Tang Y, Floriano R, Fuji M, Edalati K (2021) Phase transformation and microstructure evolution in ultrahard carbon-doped AlTiFeCoNi high-entropy alloy by high-pressure torsion. Mater. Lett. 302:1-4

    Article  Google Scholar 

  34. Yu PF, Cheng H, Zhang LJ, Zhang H, Jing Q, Ma MZ, Liaw PK, Li G, Liu RP (2016) Effects of high pressure torsion on microstructures and properties of an Al0.1CoCrFeNi high-entropy alloy. Mater. Sci. Eng. A 655:283–291

    Article  CAS  Google Scholar 

  35. Schuh B, Pippan R, Hohenwarter A (2019) Tailoring bimodal grain size structures in nanocrystalline compositionally complex alloys to improve ductility. Mater. Sci. Eng. A 748:379–385

    Article  CAS  Google Scholar 

  36. Lee DH, Seok MY, Zhao Y, Choi IC, He J, Lu Z, Suh JY, Ramamurty U, Kawasaki M, Langdon TG, Jang JI (2016) Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained cocrfemnni high-entropy alloys. Acta Materialia 109:314–322

    Article  CAS  Google Scholar 

  37. Zhang Y, Jin S, Trimby PW, Liao X, Murashkin MY, Valiev RZ, Liu J, Cairney JM, Ringer SP, Sha G (2019) Dynamic precipitation, segregation and strengthening of an Al-Zn-Mg-cu alloy (AA7075) processed by high-pressure torsion. Acta Mater. 162:19–32

    Article  CAS  Google Scholar 

  38. Azzeddine H, Mehdi B, Hennet L, Thiaudière D, Alili B, Kawasaki M, Bradai D, Langdon TG (2014) An in situ synchrotron X-ray diffraction study of precipitation kinetics in a severely deformed Cu–Ni–Si Alloy. Mater. Sci. Eng. A 597:288–294

    Article  CAS  Google Scholar 

  39. Cepeda-Jiménez CM, García-Infanta JM, Zhilyaev AP, Ruano OA, Carreño F (2011) Influence of the thermal treatment on the deformation-induced precipitation of a hypoeutectic Al–7 wt% Si casting alloy deformed by high-pressure torsion. J. Alloy. Compd. 509(3):636–643

    Article  Google Scholar 

  40. Meng F, Rosalie JM, Singh A, Somekawa H, Tsuchiya K (2014) Ultrafine grain formation in Mg–Zn alloy by in situ precipitation during high-pressure torsion. Scripta Mater. 78–79:57–60

    Article  Google Scholar 

  41. Sun WT, Qiao XG, Zheng MY, He Y, Hu N, Xu C, Gao N, Starink MJ (2018) Exceptional grain refinement in a Mg alloy during high pressure torsion due to rare earth containing nanosized precipitates. Mater. Sci. Eng. A 728:115–123

    Article  CAS  Google Scholar 

  42. Straumal BB, Kilmametov AR, Baretzky B, Kogtenkova OA, Straumal PB, Lityńska-Dobrzyńska L, Chulist R, Korneva A, Zięba P (2020) High pressure torsion of Cu–Ag and Cu–Sn Alloys: Limits for solubility and dissolution. Acta Mater. 195:184–198

    Article  CAS  Google Scholar 

  43. Straumal BB, Pontikis V, Kilmametov AR, Mazilkin AA, Dobatkin SV, Baretzky B (2017) Competition between precipitation and dissolution in Cu–Ag Alloys under high pressure torsion. Acta Mater. 122:60–71

    Article  CAS  Google Scholar 

  44. Liu X, Ding H, Huang Y, Bai X, Zhang Q, Zhang H, Langdon TG, Cui J (2021) Evidence for a phase transition in an AlCrFe2Ni2 high entropy alloy processed by high-pressure torsion. J Alloy. Compd. 867:1-11

    Article  Google Scholar 

  45. Park N, Lee B-J, Tsuji N (2017) The phase stability of equiatomic CoCrFeMnNi high-entropy alloy: comparison between experiment and calculation results. J. Alloy Compd. 719:189–193

    Article  CAS  Google Scholar 

  46. Moon J, Qi Y, Tabachnikova E, Estrin Y, Choi W-M, Joo S-H, Lee B-J, Podolskiy A, Tikhonovsky M, Kim HS (2017) Deformation-induced phase transformation of Co20Cr26Fe20Mn20Ni14 high-entropy alloy during high-pressure torsion at 77 K. Mater. Lett. 202:86–88

    Article  CAS  Google Scholar 

  47. Pommeranke H, Duan J, Curtis N, DeLibera V, Bratten A, Hoffman A, Buchely M, O’Malley R, Wen H (2023) A strong and ductile cobalt-free solid-solution Fe30Ni30Mn30Cr10 multi-principal element alloy from hot rolling. J. Alloy. Compd. 948:1-8

    Google Scholar 

  48. Li Z, Fu L, Peng J, Zheng H, Ji H, Sun Y, Ma S, Shan A (2020) Improving mechanical properties of an FCC high-entropy alloy by γ′ and B2 precipitates strengthening. Mater. Charact. 159:1-11

    Article  CAS  Google Scholar 

  49. Zhang LJ, Guo K, Tang H, Zhang MD, Fan JT, Cui P, Ma YM, Yu PF, Li G (2019) The microstructure and mechanical properties of novel Al–Cr–Fe–Mn–Ni high-entropy alloys with trimodal distributions of coherent B2 precipitates. Mater. Sci. Eng. A 757:160–171

    Article  CAS  Google Scholar 

  50. Zhao W, Han JK, Kuzminova YO, Evlashin SA, Zhilyaev AP, Pesin AM, Jang JI, Liss KD, Kawasaki M (2021) Significance of grain refinement on micro-mechanical properties and structures of additively-manufactured CoCrFeNi high-entropy alloy. Mater. Sci. Eng. A 807:1-10

    Article  Google Scholar 

  51. Duan JQ, Quadir MZ, Ferry M (2015) An analytical framework for predicting the limit in structural refinement in accumulative roll bonded nickel. Metall. Mater. Trans. A 47(1):471–478

    Article  Google Scholar 

  52. Mohamed FA, Dheda SS (2012) On the minimum grain size obtainable by high-pressure torsion. Mater. Sci. Eng. A 558:59–63

    Article  CAS  Google Scholar 

  53. Sabbaghianrad S, Torbati-Sarraf SA, Langdon TG (2018) An investigation of the limits of grain refinement after processing by a combination of severe plastic deformation techniques: a comparison of Al and MG Alloys. Mater. Sci. Eng. A 712:373–379

    Article  CAS  Google Scholar 

  54. Bachmaier A, Hafok M, Schuster R, Pippan R (2010) Limitations in the refinement by severe plastic deformation: the effect of processing. Rev. Adv. Mater. Sci. 25:16–22

    CAS  Google Scholar 

  55. Hafok M, Pippan R (2008) Athermal and thermal limits of the grain refinement by SPD. Mater. Sci. Forum. 584–586:938–943

    Article  Google Scholar 

  56. Kuzovchikov S, Bajenova I, Khvan A, Cheverikin V (2023) Investigation of the hardness and enthalpy of formation of the Sigma phase and the phase equilibria in the Cr–Co–Mn system. J. Alloy Compd. 964:1-13

    Article  Google Scholar 

  57. Dey GK, Sekhar JA (1997) Micropyretic synthesis of tough NiAl alloys. Metall. Mater. Trans. B 28(5):905–918

    Article  Google Scholar 

  58. Ivanisenko Y, Lojkowski W, Valiev RZ, Fecht H-J (2003) The mechanism of formation of nanostructure and dissolution of cementite in a pearlitic steel during high pressure torsion. Acta Mater. 51:5555–5570

    Article  CAS  Google Scholar 

  59. Korneva A, Straumal B, Kilmametov A, Chulist R, Cios G, Baretzky B, Zieba P (2019) Dissolution of Ag precipitates in the Cu-8 at% Ag alloy deformed by high pressure torsion. Materials 12:447–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Beach JA, Wang M, Bellon P, Dillon S, Ivanisenko Y, Boll T, Averbeck RS (2017) Self-organized, size-selection of precipitates during severe plastic deformation of dilute Cu–Nb alloys at low temperatures. Acta Mater. 140:217–223

    Article  CAS  Google Scholar 

  61. Languillaume J, Kapelski G, Baudelet B (1997) Cementite dissolution in heavily cold drawn pearlitic steel wires. Acta Metall. 45(3):1201–1212

    CAS  Google Scholar 

  62. Jacob K, Roy A, Gururajan MP, Nagamani Jaya B (2022) Effect of dislocation network on precipitate morphology and deformation behaviour in maraging steels: modelling and experimental validation. Materialia 21:101358

    Article  CAS  Google Scholar 

  63. Liu WH, Wu Y, He JY, Nieh TG, Lu ZP (2013) Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy. Scripta. Mater. 68:526–529

    Article  CAS  Google Scholar 

  64. Wen H, Topping TD, Isheim D, Seidman DN, Lavernia EJ (2013) Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering. Acta Mater. 61(8):2769–2782

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a research grant (award number DMR-2207965) from U.S. National Science Foundation. RZV acknowledges the support in part from Russian Science Foundation (Grant number 22-19-00445). RKI is grateful to the Russian Science Foundation for supporting project 22-23-00714. Materials Research Center at Missouri University of Science and Technology is acknowledged for providing access to electron microscopy and X-ray diffraction Dr. Eric Bohannan is thanked for his assistance with X-ray diffraction. Characterization using the Talos F200X and JEM 2100F was performed at the Center for Nanoscale Materials at Argonne National Laboratory under user proposal 75825. Work performed at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility, was supported by the U.S. DOE, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Funding

National Science Foundation,DMR-2207965,Haiming Wen,Russian Science Foundation,22–19-00445,Ruslan Z. Valiev,22–23-00714,Rinat K. Islamgaliev.

Author information

Authors and Affiliations

Authors

Contributions

Matthew Luebbe: writing-original draft, conceptualization, methodology, validation, formal analysis, investigation, data curation, visualization. Jiaqi Duan: conceptualization, methodology, validation, investigation, visualization, writing-review and editing. Peipei Cao: resources, investigation. Zhaoping Lu: resources, writing-review and editing. Rinat K. Islamgaliev: investigation, writing-review and editing. Ruslan Valiev: investigation, writing-review and editing. Yuzi Liu: resources, visualization, writing-review and editing. Haiming Wen: resources, writing-review and editing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Haiming Wen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luebbe, M., Duan, J., Cao, P. et al. Microstructural evolution in a precipitate-hardened (Fe0.3Ni0.3Mn0.3Cr0.1)94Ti2Al4 multi-principal element alloy during high-pressure torsion. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09952-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-09952-3

Navigation