Skip to main content
Log in

Preparation and electromagnetic absorption properties of silver-decorated polystyrene with frequency-selective surfaces

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, silver plating of PS microspheres using chemical plating method to prepare Ag@PS composite microspheres, the purpose is to achieve good absorbing performance. The phase composition, microstructure, dielectric, and absorbing performance of the Ag@PS microspheres with different silver contents are analyzed. The results show that the augment in silver content can make the coating of Ag@PS composite microspheres denser. When the silver content augments from 10 to 25%, ε′ augments from 11.06–13.66 to 8.85–20.84, and ε″ augments from 2.55–5.01 to 10.67–20.4, so the dielectric properties are improved. To further improve the absorption performance, Ag@PS composite microspheres are combined with a frequency-selective surfaces (FSS). When c = 18.5 mm, A = 4.4 mm or 4.6 mm, and H = 3.0 mm, the RL of the Ag@PS composite microsphere in the 8.2–12.4 GHz is less than − 10 dB. Therefore, the addition of FSS is of great help in improving the absorbing property of Ag@PS microspheres.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Huang X, Zhang J, Lai M, Sang T (2015) Preparation and microwave absorption mechanisms of the Ni–Zn ferrite nanofibers. J Alloys Compd 627:367–373

    Article  CAS  Google Scholar 

  2. Jian X, Wu B, Wei Y, Dou SX, Wang X, He W, Mahmood N (2016) Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. ACS Appl Mater Interfaces 8(9):6101–6109

    Article  CAS  PubMed  Google Scholar 

  3. Liu L, Deng H, Tang X, Lu Y, Zhou J, Wang X, Zhao Y, Huang B, Shi Y (2021) Specific electromagnetic radiation in the wireless signal range increases wakefulness in mice. Proc Natl Acad Sci 118(31):e2105838118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ye W, Sun Q, Zhang G (2019) Effect of heat treatment conditions on properties of carbon-fiber-based electromagnetic-wave-absorbing composites. Ceram Int 45(4):5093–5099

    Article  CAS  Google Scholar 

  5. Wang JX, Yang JF, Yang J, Zhang H (2020) Design of a novel carbon nanotube and metal-organic framework interpenetrated structure with enhanced microwave absorption properties. Nanotechnology 31(39):13

    Google Scholar 

  6. Li G, Xie T, Yang S, Jin J, Jiang J (2012) Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers. J Phy Chem C 116(16):9196–9201

    Article  CAS  Google Scholar 

  7. Sun G, Dong B, Cao M, Wei B, Hu C (2011) Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. J Chemistry Mater 23(6):1587–1593

    Article  CAS  Google Scholar 

  8. Fan GH, Jiang YL, Hou CX, Deng XR, Liu ZX, Zhang LJ, Zhang ZD, Fan RH (2020) Extremely facile and green synthesis of magnetic carbon composites drawn from natural bulrush for electromagnetic wave absorbing. J Alloy Compd 835:155345

    Article  CAS  Google Scholar 

  9. Liu D, Qiang R, Du Y, Wang Y, Tian C, Han X (2018) Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption. J Colloid Interface Sci 514:10–20

    Article  CAS  PubMed  Google Scholar 

  10. Benzerga R, Badard M, Mejean C, El Assal A, Le Paven C, Sharaiha A (2020) Carbon fibers loaded composites for microwave absorbing application: effect of fiber length and dispersion process on dielectric properties. J Electron Mater 49(5):2999–3008

    Article  CAS  Google Scholar 

  11. Huang X, Zhang J, Lai M, Sang T (2015) Preparation and microwave absorption mechanisms of the NiZn ferrite nanofibers. J Alloy Comp 627:367–373

    Article  CAS  Google Scholar 

  12. Wang Y, Zhang W, Wu X, Luo C, Wang Q, Li J, Hu L (2017) Conducting polymer coated metal-organic framework nanoparticles: facile synthesis and enhanced electromagnetic absorption properties. Synth Met 228:18–24

    Article  CAS  Google Scholar 

  13. Green M, Tran ATV, Chen XB (2020) Obtaining strong, broadband microwave absorption of polyaniline through data-driven materials discovery. Adv Mater Interfaces 7:2000658

    Article  CAS  Google Scholar 

  14. Liu Y, Wang SL, Wang Q, Su XL (2024) Electromagnetic and microwave absorption properties of flexible fabric coatings containing Ag decorated spherical graphene powders with FSS incorporation. J Ceramics International 50:11075–11084

    Article  CAS  Google Scholar 

  15. Wei S, Wang Q, Zhu J, Sun L, Lin H, Guo Z (2011) Multifunctional composite core–shell nanoparticles. J Nanoscale 3(11):4474–4502

    Article  CAS  Google Scholar 

  16. Hu Y, Zhao T, Zhu P, Liang X, Sun R, Wong CP (2015) Preparation of large micron-sized monodisperse polystyrene/silver core–shell microspheres with compact shell structure and their electrical conductive and catalytic properties. J Rsc Adv 5(1):58–67

    Article  CAS  Google Scholar 

  17. Wang X, Wu P (2017) Preparation of highly thermally conductive polymer composite at low filler content via a self-assembly process between polystyrene microspheres and boron nitride nanosheets. J ACS applied mater interfaces 9(23):19934–19944

    Article  CAS  Google Scholar 

  18. Ifijen I, Ikhuoria E (2020) Monodisperse polystyrene microspheres: studies on the effects of reaction parameters on particle diameter and colloidal stability. J Tanzan Sci 46(1):19–30

    Google Scholar 

  19. Wadge MD, Lowther M, Cooper TP, Reynolds WJ, Speidel A, Carter LN, Cox SC (2023) Tailoring absorptivity of highly reflective Ag powders by pulsed-direct current magnetron sputtering for additive manufacturing processes. J Mater Process Technol 317:117985

    Article  CAS  Google Scholar 

  20. Ma J.H, Liu Y, Qin J.N, Wang Q, Su X.L. (2024) Preparation and microwave absorption properties of flexible composites containing Ag decorated polystyrene powders. J Adv Dielectrics 2340009.

  21. Ding D, Wang J, Xiao G, Li Z, Bai B, Ren J, He G (2020) Enhanced electromagnetic wave absorbing properties of Si-O-C ceramics with in-situ formed 1D nanostructures. Int J Appl Ceram Technol 17(2):734–744

    Article  CAS  Google Scholar 

  22. Zhou L, Yu J, Wang Z, Wang H, Huang J, Mu W, Zheng H (2020) Electromagnetic and microwave absorption properties of FeSiAl and flaky graphite filled Al2O3 composites with different FeSiAl particle size. Ceram Int 46(4):4329–4334

    Article  CAS  Google Scholar 

  23. Ding DH, Wang J, Yu XM, Xiao GQ, Feng C, Xu WT, Bai B, Yang N, Gao YQ, Hou X, He GP (2020) Dispersing of functionalized CNTs in Si-O-C ceramics and electromagnetic wave absorbing and mechanical properties of CNTs/Si-O-C nanocomposites. Ceram Int 46(4):5407–5419

    Article  CAS  Google Scholar 

  24. Wang SL, Liu Y, Yang J, Su XL (2024) Microwave absorption properties of flexible fabric coating containing Ni decorated carbon fiber with frequency selection surface incorporation. J Diamond Relat Mater 143:110872

    Article  CAS  Google Scholar 

  25. Houbi A, Aldashevich ZA, Atassi Y, Telmanovna ZB, Saule M, Kubanych K (2021) Microwave absorbing properties of ferrites and their composites: a review. J Magnetism Magn Mater 529:167839

    Article  CAS  Google Scholar 

  26. Gunwant D, Vedrtnam A (2021) Microwave absorbing properties of carbon fiber based materials: a review and prospective. J Alloys Compd 881:160572

    Article  CAS  Google Scholar 

  27. Xing W, Li P, Wang H, Lei Q, Huang Y, Fan J, Xu G (2018) The similar Cole-Cole semicircles and microwave absorption of Hexagonal Co/C composites. J Alloys Compd 750:917–926

    Article  CAS  Google Scholar 

  28. Peng J, Peng Z, Wang L, Zheng L, Zhu Z, Li G, Jiang T (2019) Microwave assisted one-step synthesis of feco/graphene nanocomposite for microwave absorption. Springer International Publishing, Cham, pp 329–340

    Google Scholar 

  29. Sun X, He J, Li G, Tang J, Wang T, Guo Y, Xue H (2013) Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J Mater Chem C 1(4):765–777

    Article  CAS  Google Scholar 

  30. Sun L, Zhu Q, Jia Z, Guo Z, Zhao W, Wu G (2023) CrN attached multi-component carbon nanotube composites with superior electromagnetic wave absorption performance. J Carbon 208:1–9

    Article  CAS  Google Scholar 

  31. Lv H, Liang X, Ji G, Zhang H, Du Y (2015) Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl Mater Interfaces 7(18):9776–9783

    Article  CAS  PubMed  Google Scholar 

  32. Li Y, Qing YC, Zhang YR, Xu HL (2023) Simultaneously tuning structural defects and crystal phase in accordion-like TixO2x-1 derived from Ti3C2Tx MXene for enhanced electromagnetic attenuation. J Adv Ceram 12(10):1946–1960

    Article  CAS  Google Scholar 

  33. Zhang D, Xiong Y, Cheng J, Raza H, Hou C, Liu T, Ba X, Zhang P, Cao M (2021) Construction of low-frequency and high-efficiency electromagnetic wave absorber enabled by texturing rod-like TiO2 on few-layer of WS2 nanosheets. Appl Surf Sci 548:149158

    Article  CAS  Google Scholar 

  34. Zhang H, Cheng J, Wang H, Huang Z, Zheng Q, Zheng G, Zhang D, Che R, Cao M (2022) Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv Funct Mater 32(6):2108194

    Article  CAS  Google Scholar 

  35. Liu Y, Qin JN, Lu LL, Xu J, Su XL (2023) enhanced microwave absorption property of silver decorated biomass ordered porous carbon composite materials with frequency selective surface incorporation. Int J Miner J Metall Mater 30(3):525–535

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by National Science and Technology Major Project (J2019-VI-0015–0130). This study was funded and supported by National Natural Science Foundation of China (No. 52103361), Scientists and Engineers Team Construction Project of Qin Chuangyuan (2024QCY-KXJ-122), Shaanxi University Youth Outstanding Talents Support Plan, Scientific Research Program Funded by Education Department of Shaanxi Provincial Government (No.23JC036), Scientific and Technological Plan Project of Xi’an Science and Technology Bureau (23GXFW0018, 23KGDW0031-2022), and Scientific and Technological Guidance Project of Xian Key Laboratory of Textile Composites (xafzfc-zd08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Liu or Xiaolei Su.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Liu, Y., Su, E. et al. Preparation and electromagnetic absorption properties of silver-decorated polystyrene with frequency-selective surfaces. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09949-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-09949-y

Navigation