Skip to main content
Log in

Molecular dynamics study on nanogrinding behavior of lamellar heterostructure gallium nitride

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lamellar heterostructures containing gallium nitride (GaN) have excellent photoelectric properties and also play an important role in lighting, the quantum field, and other fields. Exploring the nanoscale processing of lamellar heterostructure GaN is crucial to the manufacturing of high-performance devices based on heterostructure GaN. In this paper, the microstructure, surface morphology, dislocation length, Von Mises stress, temperature, number of removed atoms, and surface roughness of lamellar heterostructure GaN were systematically investigated using molecular dynamics simulation. The results show the presence of a large number of phase transitions, dislocation growth, and stress during nanogrinding; moreover, temperature also increases during this process. Furthermore, increasing the grinding speed will inhibit dislocation growth; increasing the grinding depth will cause extensive damage to the material surface. Therefore, this study presents a theoretical basis for the processing of lamellar heterostructure GaN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Data availability

The data generated during the current study are available from the corresponding author on reasonable request.

References

  1. Fujita S (2015) Wide-bandgap semiconductor materials: for their full bloom. Jpn J Appl Phys 54:030101

    Article  CAS  Google Scholar 

  2. Malyk O (2012) Charge carrier mobility in gallium nitride. Diam Relat Mater 23:23–27

    Article  CAS  Google Scholar 

  3. Możdżyńska EB, Kamiński P, Kozłowski R, Korona KP, Złotnik S, Jezierska E, Baranowski JM (2022) Effect of the growth temperature on the formation of deep-level defects and optical properties of epitaxial BGaN. J Mater Sci 57(36):17347–17362.

    Article  Google Scholar 

  4. Ishikawa Y, Sugawara Y, Yokoe D et al (2023) Characterization of dislocations at the emission site by emission microscopy in GaN p–n diodes. J Mater Sci 58:9221–9232.

    Article  CAS  Google Scholar 

  5. Narang K, Singh VK, Pandey A et al (2022) Suitability of thin-GaN for AlGaN/GaN HEMT material and device. J Mater Sci 57:5913–5923.

    Article  CAS  Google Scholar 

  6. Wu MH, Chang SP, Liao WY et al (2013) Efficiency of GaN/InGaN double-heterojunction photovoltaic cells under concentrated illumination. Surf Coat Tech 231:253–256

    Article  CAS  Google Scholar 

  7. Huang X, Lee FC, Li Q, Du W (2015) High-frequency high-efficiency GaN-based interleaved CRM bidirectional buck/boost converter with inverse coupled inductor. IEEE Trans Power Electr 31(6):4343–4352

    Article  Google Scholar 

  8. Nord J, Albe K, Erhart P et al (2003) Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride. J Phys Condens Matter 15(32):5649–5662

    Article  CAS  Google Scholar 

  9. Kim JH, Holloway PH (2004) Wurtzite to zinc-blende phase transition in gallium nitride thin films. Appl Phys Lett 84(5):711–713

    Article  CAS  Google Scholar 

  10. Wang Y, Li L, Gao T, Gao Y, Liu Y, Zhang Z, Chen Q, Xie Q (2022) Crystallization behavior and defect analysis on induction growth of hexagonal GaN in isothermal relaxation. Vacuum 205:111475

    Article  CAS  Google Scholar 

  11. Tetsuya K et al (2014) Hexagonal GaN microdisk with wurtzite/zinc-blende GaN crystal phase nano-heterostructures and high quality zinc-blende GaN crystal layer. Jpn J Appl Phys 53(6):068001

    Article  Google Scholar 

  12. Xu HY, Liu Z, Liang Y, Rao YY, Zhang XT, Hark SK (2009) Structure and photoluminescence of wurtzite/zinc-blende heterostructure GaN nanorods. Appl Phys Lett 95(13):133108

    Article  Google Scholar 

  13. Zainal N, Novikov SV, Akimov AV, Staddon CR, Foxon CT, Kent AJ (2012) Hexagonal (wurtzite) GaN inclusions as a defect in cubic (zinc-blende) GaN. Phys B: Condens Matter 407(15):2964–2966

    Article  CAS  Google Scholar 

  14. Raychaudhuri S, Yu ET (2006) Calculation of critical dimensions for wurtzite and cubic zinc blende coaxial nanowire heterostructures. J Vac Sci Technol B: Microelectr Nanometer Struct Process Meas Phenom 24(4):2053–2059

    Article  CAS  Google Scholar 

  15. Dipalo M, Gao Z, Scharpf J et al (2009) Combining diamond electrodes with GaN heterostructures for harsh environment ISFETs. Diam Relat Mater 18(5–8):884–889

    Article  CAS  Google Scholar 

  16. Drory MD, Ager JW, Suski T et al (1996) Hardness and fracture toughness of bulk single crystal gallium nitride. Appl Phys Lett 69(26):4044–4046

    Article  Google Scholar 

  17. Zhao P, Pan J, Zhao B, Wu J (2022) Molecular dynamics study of crystal orientation effect on surface generation mechanism of single-crystal silicon during the nano-grinding process. J Manuf Process 74:190–200

    Article  Google Scholar 

  18. Bian Z, Gao T, Gao Y et al (2022) Effects of three-body diamond abrasive polishing on silicon carbide surface based on molecular dynamics simulations. Diam Relat Mater 129:109368

    Article  CAS  Google Scholar 

  19. Wang Y, Tang S, Guo J (2020) Molecular dynamics study on deformation behaviour of monocrystalline GaN during nano abrasive machining. Appl Surf Sci 510:145492

    Article  CAS  Google Scholar 

  20. Huang Y, Wang M, Xu Y et al (2020) Investigation on gallium nitride with N-vacancy defect nano-grinding by molecular dynamics. J Manuf Process 57:153–162

    Article  Google Scholar 

  21. Li C, Hu Y, Zhang F et al (2023) Molecular dynamics simulation of laser assisted grinding of GaN crystals. Int J Mech Sci 239:107856

    Article  Google Scholar 

  22. Zhang C, Dong Z, Zhang S, Guo X, Yuan S, Jin Z, Kang R, Guo D (2022) The deformation mechanism of gallium-faces and nitrogen-faces gallium nitride during nanogrinding. Int J Mech Sci 214:106888

    Article  Google Scholar 

  23. Huang Y, Wang M, Xu Y, Zhu F (2021) Investigation of vibration-assisted nano-grinding of gallium nitride via molecular dynamics. Mater Sci Semicond Process 121:105372

    Article  CAS  Google Scholar 

  24. Zhao P, Gao X, Zhao B et al (2023) Investigation on nano-grinding process of GaN using molecular dynamics simulation: nano-grinding parameters effect. J Manuf Process 102:429–442

    Article  Google Scholar 

  25. Li C, Piao Y, Meng B et al (2022) Anisotropy dependence of material removal and deformation mechanisms during nanoscratch of gallium nitride single crystals on (0001) plane. Appl Surf Sci 578:152028

    Article  CAS  Google Scholar 

  26. Li C, Hu Y, Wei Z et al (2024) Damage evolution and removal behaviors of GaN crystals involved in double-grits grinding. Int J Extreme Manuf 6(2):025103

    Article  Google Scholar 

  27. Li C, Piao Y, Meng B et al (2022) Phase transition and plastic deformation mechanisms induced by self-rotating grinding of GaN single crystals. Int J Mach Tools Manuf 172:103827

    Article  Google Scholar 

  28. Plimpton S (1995) Fast Parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  CAS  Google Scholar 

  29. Thompson AP, Aktulga HM, Berger R, Bolintineanu DS, Brown WM, Crozier PS, In’t Veld PJ, Kohlmeyer A, Moore SG, Nguyen TD, Shan R (2022) LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun 271:108171

    Article  CAS  Google Scholar 

  30. Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell Simul Mater Sci Eng 18(1):015012

    Article  Google Scholar 

  31. Jeng YR, Tsai PC, Fang TH (2004) Molecular dynamics investigation of the mechanical properties of gallium nitride nanotubes under tension and fatigue. Nanotechnology 15(12):1737

    Article  CAS  Google Scholar 

  32. Guo J, Chen J, Wang Y (2020) Temperature effect on mechanical response of c-plane monocrystalline gallium nitride in nanoindentation: a molecular dynamics study. Ceram Int 46(8):12686–12694

    Article  CAS  Google Scholar 

  33. Kang JW, Hwang HJ (2004) Atomistic study of III-nitride nanotubes. Comput Mater Sci 31(3–4):237–246

    Article  CAS  Google Scholar 

  34. Chen M, Dai H (2022) Molecular dynamics study on grinding mechanism of polycrystalline silicon carbide. Diam Relat Mater 130:109541

    Article  CAS  Google Scholar 

  35. Zhao P, Guo Y (2018) Grain size effects on indentation-induced defect evolution and plastic deformation mechanism of ploycrystalline materials. Comput Mater Sci 155:431–438

    Article  CAS  Google Scholar 

  36. Liu H, Guo Y, Zhao P (2020) Surface generation mechanism of monocrystalline materials under arbitrary crystal orientations in nanoscale cutting. Mater Today Commun 25:101505

    Article  CAS  Google Scholar 

  37. Stukowski A, Bulatov VV, Arsenlis A (2012) Automated identification and indexing of dislocations in crystal interfaces. Modell Simul mater sci eng 20(8):08500

    Article  Google Scholar 

  38. Dai H, Hu Y, Wu W et al (2021) Molecular dynamics simulation of ultra-precision machining 3C-SiC assisted by ion implantation. J Manuf Process 69(4):398–411

    Article  Google Scholar 

  39. Gao Y, Yan W, Gao T et al (2020) Properties of the structural defects during SiC–crystal–induced crystallization on the solid–liquid interface. Mat Sci Semicon Proc 116:105155

    Article  CAS  Google Scholar 

  40. Ren J, Hao M, Lv M et al (2018) Molecular dynamics research on ultra-high-speed grinding mechanism of monocrystalline nickel. Appl Surf Sci 455:629–634

    Article  CAS  Google Scholar 

  41. Hutchinson B, Ridley N (2006) On dislocation accumulation and work hardening in Hadfield steel. Scripta Mater 55(4):299–302

    Article  CAS  Google Scholar 

  42. Guo X, Li Q, Liu T et al (2016) Molecular dynamics study on the thickness of damage layer in multiple grinding of monocrystalline silicon. Mater Sci Semicond Process 51:15–19

    Article  CAS  Google Scholar 

  43. Zhao P, Zhao B, Pan J, Wu J (2022) Superimpose mechanism of surface generation process in grinding of monocrystalline silicon using molecular dynamics simulation. Mater Sci Semicond Process 147:106684

    Article  CAS  Google Scholar 

  44. Maras E, Trushin O, Stukowski A, Ala-Nissila T, Jonsson H (2016) Global transition path search for dislocation formation in Ge on Si (001). Comput Phys Commun 205:13–21

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant Nos. 62262021, 51761004, 51661005, and 11964005), Industry and Education Combination Innovation Platform of Intelligent Manufacturing and Graduate Joint Training Base at Guizhou University (Grant No. 2020-520000-83-01-324061), the Guizhou Province Science and Technology Fund, China (Grant Nos. ZK[2021] 051, [2017] 5788, and J[2015] 2050), High-Level Creative Talent in Guizhou Education Department of China, and the Cooperation Project of Science and Technology of Guizhou Province, China (Grant No. LH[2016] 7430).

Author information

Authors and Affiliations

Authors

Contributions

TG contributed to conceptualization, investigation, formal analysis, review, and editing draft. YW contributed to conceptualization, supervision, visualization, investigation, and writing—review and editing. LL contributed to conceptualization, methodology, and data curation. YG, YL, ZZ, ZB, and QX helped in investigation and writing—review and editing.

Corresponding author

Correspondence to Tinghong Gao.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Ethical approval

The authors declare that our work does not involve live subjects.

Additional information

Handling Editor: Scott Beckman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, T., Wang, Y., Li, L. et al. Molecular dynamics study on nanogrinding behavior of lamellar heterostructure gallium nitride. J Mater Sci 59, 12540–12554 (2024). https://doi.org/10.1007/s10853-024-09946-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09946-1

Navigation