Skip to main content
Log in

Texture evolution prediction of diffusion bonded titanium alloy with hot gas bulging experiments by cross-scale simulation modeling

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Developing a high precision cross-scale model for diffusion bonded (DB) titanium alloy to predict macroscopic deformation and microstructure evolution is critical for industrial production requirements. To characterize the plastic behaviors of DB TC4 alloy, the mechanical properties experiments were carried out under elevated temperatures. The gas bulging process of the alloy sheet was predicted, which was combined with the macroscopic finite element method (FEM) and crystal plasticity FEM, and the predicted mechanical behavior and texture evolution are in good agreement with the experimental results, and the relative errors between the two scales are generally minor. The effects of different strains and stress states on the microstructure heterogeneous deformation, crystal orientation, and slip mode of titanium alloy are discussed on this basis. The results indicate that more grains undergo significant plastic deformation from the stress states of plane strain to equal biaxial tension. The active rate of Prismatic slip decreases, and the Pyramidal slip systems also start obviously. The grains with easy-to-deform orientation can gradually rotate to a stable orientation during plastic deformation and have a lower Schmid factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Zhao Q, Sun Q, Xin S, Chen Y, Wu C, Wang H, Xu J, Wan M, Zeng W, Zhao Y (2022) High-strength titanium alloys for aerospace engineering applications: a review on melting-forging process. Mater Sci Eng A 845:1–43. https://doi.org/10.1016/j.msea.2022.143260

    Article  Google Scholar 

  2. Yang X, Liu B, Zhang H, Tang J, Zhou T, Wang Y, Zheng H, Kuang Y (2024) Influence of stress on the corrosion behavior of Ti alloys: a review. J Alloy Compd 985:1–17. https://doi.org/10.1016/j.jallcom.2023.173346

    Article  CAS  Google Scholar 

  3. Yang H, Li H, Sun H, Zhang YH, Liu X, Zhan M, Liu YL, Fu MW (2022) Anisotropic plasticity and fracture of alpha titanium sheets from cryogenic to warm temperatures. Int J Plasticity 156:1–32. https://doi.org/10.1016/j.ijplas.2022.103348

    Article  CAS  Google Scholar 

  4. Li H, Zhang X, Chen J, Li J (2013) Effects of stress state on texture and microstructure in cold drawing-bulging of CP-Ti sheet. T Nonferr Metal Soc 23(1):23–31. https://doi.org/10.1016/S1003-6326(13)62424-3

    Article  CAS  Google Scholar 

  5. Feng R, Chen M, Xie L (2024) Constitutive relationship and fracture mechanism for wide stress triaxiality of titanium alloy. Eng Fract Mech 295:1–19. https://doi.org/10.1016/j.engfracmech.2023.109804

    Article  Google Scholar 

  6. Li Y, Chen H, Du L, Yang F, Zhang Y, Li D (2024) Characterization and unified modelling of creep and viscoplasticity deformation of titanium alloy at elevated temperature. Int J Plasticity 173:1–22. https://doi.org/10.1016/j.ijplas.2024.103892

    Article  CAS  Google Scholar 

  7. Li C, Li Y, Zhang D, Li X, Zhao W (2023) Experimental investigation of the mechanical properties and microstructures of Ti–6Al–4V solid-state diffusion bonding joint under high temperature conditions. J Mater Res Technol 26:4042–4058. https://doi.org/10.1016/j.jmrt.2023.08.172

    Article  CAS  Google Scholar 

  8. Zeng X, Fan X, Li H, Zhan M, Li S, Ren T, Wu K (2020) Grain refinement in hot working of 2219 aluminium alloy: on the effect of deformation mode and loading path. Mater Sci Eng A 794:1–14. https://doi.org/10.1016/j.msea.2020.139905

    Article  CAS  Google Scholar 

  9. Wang N, Chen M, Xie L (2019) Hot flow behavior characterization for predicting the titanium alloy TC4 hollow blade surface Sinkage defects in the SPF/DB process. Int J Mater Forming 12:827–844. https://doi.org/10.1007/s12289-018-1454-z

    Article  Google Scholar 

  10. Sharma D, Singh I, Kumar J (2022) A microstructure based elasto-plastic polygonal FEM and CDM approach to evaluate LCF life in titanium alloys. Int J Mech Sci 225:1–26. https://doi.org/10.1016/j.ijmecsci.2022.107356

    Article  Google Scholar 

  11. Tong X, Li Y, Fu M (2024) Modelling of grain size effects in progressive microforming using CPFEM. Int J Mech Sci 267:1–22. https://doi.org/10.1016/j.ijmecsci.2024.108971

    Article  Google Scholar 

  12. Pei Y, Hao Y, Zhao J, Yang J, Teng B (2023) Texture evolution prediction of 2219 aluminum alloy sheet under hydro-bulging using cross-scale numerical modeling. J Mater Sci Tech 149:190–204. https://doi.org/10.1016/j.jmst.2022.11.037

    Article  CAS  Google Scholar 

  13. Shang X, Zhang H, Cui Z, Fu M, Shao J (2020) A multiscale investigation into the effect of grain size on void evolution and ductile fracture: experiments and crystal plasticity modeling. Int J Plasticity 125:133–149. https://doi.org/10.1016/j.ijplas.2019.09.009

    Article  Google Scholar 

  14. Muhammad W, Brahme A, Ali U, Hirsch J, Engler O, Aretz H, Kang J, Mishra R, Inal K (2019) Bendability enhancement of an age-hardenable aluminum alloy: Part II—multiscale numerical modeling of shear banding and fracture. Mater Sci Eng A 754:161–177. https://doi.org/10.1016/j.msea.2019.03.050

    Article  CAS  Google Scholar 

  15. Sun X, Li H, Zhan M, Zhou J, Zhang J, Gao J (2021) Cross-scale prediction from RVE to component. Int J Plasticity 140:1–32. https://doi.org/10.1016/j.ijplas.2021.102973

    Article  Google Scholar 

  16. Aufa AN, Hassan MZ, Ismail Z (2021) Recent advances in Ti-6Al-4V additively manufactured by selective laser melting for biomedical implants: prospect development. J Alloy Compd 896:1–25. https://doi.org/10.1016/j.jallcom.2021.163072

    Article  CAS  Google Scholar 

  17. Zhang XS, Chen YJ, Hu JL (2018) Recent advances in the development of aerospace materials. Prog Aerosp Sci 97:22–34. https://doi.org/10.1016/j.paerosci.2018.01.001

    Article  Google Scholar 

  18. Wu B, Dong H, Li P et al (2022) Vacuum diffusion bonding of TC4 titanium alloy and T2 copper by a slow cooling heat treatment. J Mater Process Tech 305:1–18. https://doi.org/10.1016/j.jmatprotec.2022.117595

    Article  CAS  Google Scholar 

  19. Lin T, Li C, Chen Y, Chen L, Si X, Qi J, Cao J (2024) Role of nanostructured Ni surface layer in enhanced Hastelloy alloy diffusion bonding at temperatures far beyond recrystallization. Scripta Mater 239:1–5. https://doi.org/10.1016/j.scriptamat.2023.115826

    Article  CAS  Google Scholar 

  20. Blanch OL, Lunt D, Baxter GJ, Jackson M (2021) Deformation behaviour of a FAST diffusion bond processed from dissimilar titanium alloy powders. Metall Mater Trans A 52:3064–3082. https://doi.org/10.1007/s11661-021-06301-w

    Article  CAS  Google Scholar 

  21. Feng R, Chen M, Xie L, Ma G, Xu Y, Mei H (2022) Research on hot deformation behavior and constitutive relation of diffusion bonded TC4 titanium alloy. J Mater Sci 57:21777–21797. https://doi.org/10.1007/s10853-022-07977-0

    Article  CAS  Google Scholar 

  22. Ozturk F, Ece RE, Polat N, Koksal A, Evis Z (2016) Application of electric resistance heating method on titanium hot forming at industrial scale. Arab J Sci Eng 41:4441–4448. https://doi.org/10.1007/s13369-016-2159-6

    Article  CAS  Google Scholar 

  23. Kruglov A, Enikeev F, Lutfullin R (2002) Superplastic forming of a spherical shell out a welded envelope. Mater Sci Eng A 323:416–426. https://doi.org/10.1016/S0921-5093(01)01376-4

    Article  Google Scholar 

  24. Zhang H, Diehl M, Roters F, Raabe D (2016) A virtual laboratory using high resolution crystal plasticity simulations to determine the initial yield surface for sheet metal forming operations. Int J Plasticity 80:111–138. https://doi.org/10.1016/j.ijplas.2016.01.002

    Article  CAS  Google Scholar 

  25. Bassani JL (1993) Plastic flow of crystals. Adv Appl Mech 30:191–258

    Article  Google Scholar 

  26. Wu TY (1991) Latent hardening in single crystals I. Theory and experiments. Proc R Soc A 435:1–19. https://doi.org/10.1098/rspa.1991.0127

    Article  Google Scholar 

  27. Asaro R (1983) Crystal plasticity. J Appl Mech 50:921–934. https://doi.org/10.1115/1.3167205

    Article  Google Scholar 

  28. Feng R, Chen M, Xie L (2024) Unified thermomechanical model of Ti-6Al-4V titanium alloy considering microstructure evolution and damage fracture under different stress state. Int J Mater Form 17:1. https://doi.org/10.1007/s12289-023-01799-4

    Article  Google Scholar 

  29. Chai Z, Wang W, Ren Y, Wang X, Zhang Y, Sun F, Hao F, Li J (2024) Hot deformation behavior and microstructure evolution of TC11 dual-phase titanium alloy. Mater Sci Eng A 898:1–13. https://doi.org/10.1016/j.msea.2024.14633

    Article  Google Scholar 

  30. Russ J, Dehoff R (1999) Practical streology, 2nd edn. Plenum Press

  31. Ghosh S, Shahba A, Tu X, Huskins E, Schuster B (2016) Crystal plasticity FE modeling of Ti alloys for a range of strain-rates. Part II: image-based model with experimental validation. Int J Plasticity 87:69–85. https://doi.org/10.1016/j.ijplas.2016.09.003

    Article  CAS  Google Scholar 

  32. Xu Q, Lu Z (2013) An elastic-plastic cohesive zone model for metal-ceramic interfaces at finite deformations. Int J Plasticity 41:147–164. https://doi.org/10.1016/j.ijplas.2012.09.008

    Article  Google Scholar 

  33. Li H, Wu C, Yang H (2013) Crystal plasticity modeling of the dynamic recrystallization of two-phase titanium alloys during isothermal processing. Int J Plasticity 51:271–291. https://doi.org/10.1016/j.ijplas.2013.05.001

    Article  CAS  Google Scholar 

  34. Chen P, Mao S, Liu Y, Wang F, Zhang Y, Han X (2013) In-situ EBSD study of the active slip systems and lattice rotation behavior of surface grains in aluminum alloy during tensile deformation. Mater Sci Eng A 580:114–124. https://doi.org/10.1016/j.msea.2013.05.046

    Article  CAS  Google Scholar 

  35. Jia R, Zeng W, Zhao Z, Wang B, Xu J, Wang Q (2023) In situ EBSD/HR-DIC-based investigation on anisotropy mechanism of a near α titanium plate with strong transverse texture. Mater Sci Eng A 867:1–15. https://doi.org/10.1016/j.msea.2023.144743

    Article  CAS  Google Scholar 

  36. Raabe D, Sachtleber M, Weiland H, Scheele G, Zhao Z (2003) Grain-scale micromechanics of polycrystal surfaces during plastic straining. Acta Mater 51:1539–1560. https://doi.org/10.1016/S1359-6454(02)00557-8

    Article  CAS  Google Scholar 

  37. Luo Q, Gao Y, Liu B, Feng Y, Zhang J, Li Q, Chou K (2020) Thermodynamics and kinetics of phase transformation in rare earth–magnesium alloys: a critical review. J Mater Sci Tech 44:171–190. https://doi.org/10.1016/j.jmst.2020.01.022

    Article  CAS  Google Scholar 

  38. Glavicic M, Salem A, Semiatin S (2004) X-ray line-broadening analysis of deformation mechanisms during rolling of commercial-purity titanium. Acta Mater 52:647–655. https://doi.org/10.1016/j.actamat.2003.10.025

    Article  CAS  Google Scholar 

  39. Jeon B, Lee M, Jun T, Jeong Y (2024) Temperature-dependent behavior of CP-Ti interpreted via self-consistent crystal plasticity simulation. Mater Sci Eng A 890:1–16. https://doi.org/10.1016/j.msea.2023.145904

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by financial support from National Natural Science Foundation of China (52375345) and Aviation Engine Independent Innovation Special Foundation of China (ZZCX-2018-031).

Author information

Authors and Affiliations

Authors

Contributions

Rui Feng involved in writing—original draft, methodology, and investigation. Minghe Chen involved in writing—review and editing, supervision, and project administration. Lansheng Xie involved in conceptualization.

Corresponding author

Correspondence to Minghe Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Scott Beckman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, R., Chen, M. & Xie, L. Texture evolution prediction of diffusion bonded titanium alloy with hot gas bulging experiments by cross-scale simulation modeling. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09944-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-09944-3

Navigation