Skip to main content
Log in

Exploring the multifaceted properties: structural, electronic, magnetic, mechanical, thermodynamic, transport, and optical characteristics of rhodium-based half-Heusler alloys

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Density functional theory was employed to investigate the structural, electronic, elastic, thermodynamic, and thermoelectric characteristics of RhNbZ (Z = Si, Ge) half-Heusler materials. Furthermore, RhNbZ (Z = Si, Ge) alloys adhere to the semiconductor behaviour dictated by the Slater–Pauling rule. Elastic property calculations affirm the mechanical stability of the compounds. Next, we use density functional perturbation theory (DEPT) to predict the dynamical context of these ordered systems. Utilizing the Debye quasi-harmonic model, we explored the thermodynamic properties of these half-Heusler alloys. The thermoelectric properties of the materials were evaluated using the semi-classical Boltzmann theory, which was implemented in the BoltzTraP code. A remarkably high figure of merit values for RhNbZ (Z = Si, Ge) compounds suggests their potential for thermoelectric applications across a wide temperature range. Optical properties, including dielectric function, absorption coefficient, refractive index, reflectivity, and optical conductivity, were calculated and discussed. Notably, the materials exhibit exceptional absorption coefficients α(ω) in the ultraviolet and visible regions of the light spectrum, indicating their suitability for applications in photovoltaic and optical equipment manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Data availability

Data will be made available on request to corresponding author.

References

  1. De Groot RA, Mueller FM, van Engen PG, Buschow KHJ (1983) New class of materials: half-metallic ferromagnets. Phys Rev Lett 50:2024

    Article  Google Scholar 

  2. Zhu H, He R, Mao J, Zhu Q, Li C, Sun J, Ren W, Wang Y, Liu Z, Tang Z et al (2018) Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency. Nat Commun 9:1

    Google Scholar 

  3. Zhu H, Mao J, Li Y, Sun J, Wang Y, Zhu Q, Li G, Song Q, Zhou J, Fu Y et al (2019) Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance. Nat Commun 10:1

    Google Scholar 

  4. Lee MS, Poudeu FP, Mahanti SD (2011) Electronic structure and thermoelectric properties of Sb-based semiconducting half-Heusler compounds. Phys Rev B 83:085204

    Article  Google Scholar 

  5. Singh S, Zeeshan M, Brink Jvd, Kandpal HC (2019) Ab initio study of Bi-based half Heusler alloys as potential thermoelectric prospects. arXiv:1904.02488

  6. Culp SR, Poon SJ, Tritt TM et al (2006) Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800 °C. Appl Phys Lett 88:042106

    Article  Google Scholar 

  7. Sakurada S, Shutoh N (2005) Effect of Ti substitution on the thermoelectric properties of (Zr, Hf)NiSn half-Heusler compounds. Appl Phys Lett 86:082105

    Article  Google Scholar 

  8. Sekimoto T, Kurosaki K, Muta H, Yamanaka S (2006) Thermoelectric and thermophysical properties of Er Pd X (X = Sb and Bi) half-Heusler compounds. J All Compos 407:326

    Article  CAS  Google Scholar 

  9. Casper F, Graf T, Chadov S, Balke B, Felser C (2012) Half-Heusler compounds: novel materials for energy and spintronic applications. Semicond Sci Technol 27(6):063001

    Article  Google Scholar 

  10. Yousuf S, Gupta DC (2019) Thermoelectric response of ZrNiSn and ZrNiPb half-Heuslers: applicability of semi-classical Boltzmann transport theory. Results Phys 12:1382

    Article  Google Scholar 

  11. Young DP, Khalifah P, Cava RJ, Ramirez AP (2000) Thermoelectric properties of pure and doped FeMSb (M = V, Nb). J Appl Phys 87(1):317

    Article  CAS  Google Scholar 

  12. Sootsman JR, Chung DY, Kanatzidis MG (2009) New and old concepts in thermoelectric materials. Angew Chem Int Ed 48:8616

    Article  CAS  Google Scholar 

  13. Yu L, Zunger A (2012) Identification of potential photo-voltaic absorbers based on first principles spectroscopic screening of materials. Phys Rev Lett 108:068701

    Article  PubMed  Google Scholar 

  14. Ahmoum H, Li G, Belakry S, Boughrara M, Su’ait MS, Kerouad M, Wang Q (2021) Structural, morphological and transport properties of Ni doped ZnO thin films deposited by thermal co-evaporation method. Mater Sci Semicond Process 123:105530

    Article  CAS  Google Scholar 

  15. Sekimoto T, Kurosaki K, Muta H, Yamanaka S (2005) Thermoelectric properties of (Ti, Zr, Hf) CoSb type half-Heusler compounds. Mater Trans 46(7):1481

    Article  CAS  Google Scholar 

  16. Gruhn T (2010) Comparative ab initio study of half-Heusler compounds for optoelectronic applications. Phys Rev B 82:125210

    Article  Google Scholar 

  17. Scotsman JR, Chung DY, Kanatzidis MG (2009) New and old concepts in thermoelectric materials. Angew Chem Int Ed 48:8616

    Article  Google Scholar 

  18. Li G, Ahmoum H, Liu S, Liu S, Su’ait MS, Boughrara M, Kerouad M, Wang Q (2019) Phys B 562:67

    Article  CAS  Google Scholar 

  19. Tobola J, Pierre J, Kaprzyk S, Skolozdra RV, Kouacou MA (1998) Crossover from semiconductor to magnetic metal in semi-Heusler phases as a function of valence electron concentration. J Phys Condens Matter 10(5):1013–1032. https://doi.org/10.1088/0953-8984/10/5/011

    Article  CAS  Google Scholar 

  20. Hohl H et al (1997) A new class of materials with promising thermoelectric properties: MNiSn (M= Ti, Zr, Hf). MRS Online Proc Libr OPL 478:109

    Article  CAS  Google Scholar 

  21. Kim S, Kimura Y, Mishima Y (2007) High-temperature thermoelectric properties of TiNiSn-based half-Heusler compounds. Intermetallics 15:349

    Article  CAS  Google Scholar 

  22. Bennani MA et al (2021) Structural, electronic, magnetic, elastic, thermodynamic, and thermoelectric properties of the half-Heusler RhFeX (with X = Ge, Sn) compounds. J Supercond Nov Magn 34:211

    Article  CAS  Google Scholar 

  23. Wei J, Wang G (2018) Thermoelectric and optical properties of half-Heusler compound TaCoSn: a first-principle study. J Alloys Compd 757:118

    Article  CAS  Google Scholar 

  24. Mehmood N, Ahmad R, Murtaza G (2017) Ab initio investigations of structural, elastic, mechanical, electronic, magnetic, and optical properties of half-Heusler compounds RhCrZ (Z= Si, Ge). J Supercond Nov Magn 30(9):2481

    Article  CAS  Google Scholar 

  25. Liu J, Han S, Cao G, Zhou Z, Sheng C, Liu H (2020) A high-throughput descriptor for prediction of lattice thermal conductivity of half-Heusler compounds. J Phys Appl Phys 53:315301

    Article  CAS  Google Scholar 

  26. Huang W et al (2015) Structural and electronic properties of half-Heusler alloys PtXBi (with X = Mn, Fe Co, Ni) calculated from first principles. J Magn Magn Mater 377:252

    Article  CAS  Google Scholar 

  27. Huang W et al (2014) Structural and electronic properties of half-Heusler alloy PdMnBi calculated from first principles. Mater Chem Phys 148(1–2):32–38

    Article  CAS  Google Scholar 

  28. Abir B, Ahmoum H, Khamkhami JE, Bardouni TE, Achahbar A (2022) First-principles study of the structural, electronic, optical, and thermoelectric properties of the RhVZ (Z = Si, Ge, Sn). Micro Nanostruct 164:107162

    Article  Google Scholar 

  29. Dubey S, Abraham JA, Dubey K, Sahu V, Modi A, Pagare G, Gaur NK (2024) DFT study of RhTiP half Heusler semiconductor: revealing its mechanical, optoelectronic, and thermoelectric properties. Phys B Condens Matter 672:415452

    Article  CAS  Google Scholar 

  30. Ahmad M et al (2015) Structural, elastic, electronic, magnetic and optical properties of RbSrX half-Heusler compounds. J Magn Magn Mater 204:377

    Google Scholar 

  31. Missoum A et al (2014) Ab initio study of the structural and optoelectronic properties of the half-Heusler CoCrZ (Z = Al, Ga). Can J Phys 1105:92

    Google Scholar 

  32. Ameri M et al (2013) Structural and optoelectronic properties of NiTiX and CoVX (X = Sb and Sn) half-Heusler compounds: an ab initio study. Optic 570:124

    Google Scholar 

  33. Tran F et al (2019) WIEN2k: an augmented plane wave plus local orbitals program for calculating crystal properties

  34. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502

    Article  PubMed  Google Scholar 

  35. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  36. Blanco M, Francisco E, Luaña V (2004) GIBBS. Comput Phys Commun 158:57–72

    Article  CAS  Google Scholar 

  37. Madsen GKH, Singh DJ (2006) BoltzTraP. A code for calculating band-structure dependent quantities. Comput Phys Commun 175:67–71

    Article  CAS  Google Scholar 

  38. Murnaghan F (1944) The compressibility of media under extreme pressures. Proc Natl Acad Sci 30:244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cai Y, Lan J, Zhang G, Zhang YW (2014) Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys Rev B 89:035438

    Article  Google Scholar 

  40. Kurian J, Pai SP, James J, Koshy J (2001) Structural, thermal and dielectric properties of barium lanthanum niobate: a potential material for substrate application. J Mater Sci Mater Electron 12:173–177

    Article  CAS  Google Scholar 

  41. Hu GQ, Yi S, Fang Z, Hu Z, Zhao W (2019) Luminescence properties of high thermal stability Sr2LaNbO6 phosphors with double-perovskite structures. Opt Mater 98:109428

    Article  CAS  Google Scholar 

  42. Srivastava AM, Brik MG (2012) Ab initio and crystal field studies of the Mn4+-doped Ba2LaNbO6 double-perovskite. J Lumin 132:579–584

    Article  CAS  Google Scholar 

  43. Kamlesh PK, Agrawal R, Rani U, Verma AS (2022) Comprehensive ab-initio calculations of AlNiX (X = P, As and Sb) half-Heusler compounds: Stabilities and applications as green energy resources. Mater Chem Phys 275:125233

    Article  CAS  Google Scholar 

  44. Pugh S (1954) Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, The London, Edinburgh, and Dublin Philos. Mag J Sci 45:823–843

    CAS  Google Scholar 

  45. Pettiford DG (1992) Theoretical predictions of structure and related properties of Intermetallics. Mater Sci Technol 8(4):345–349

    Article  Google Scholar 

  46. Vaitheeswaran G, Kanchana V, Svane A, Delin A (2007) Elastic properties of MgCNi3 – a superconducting perovskite. J Phys Condens Matter 19:326214

    Article  Google Scholar 

  47. Anderson OL, Demarest HH (1971) Elastic constants of the central force model for cubic structures: polycrystalline aggregates and instabilities. J Geophys Res 76(5):1349–1369

    Article  CAS  Google Scholar 

  48. Hadi M (2020) Superconducting phases in a remarkable class of metallic ceramics. J Phys Chem Solid 138:109275

    Article  CAS  Google Scholar 

  49. Seddik T, Ugur G, Soyalp F, Khenata R, Prakash D, Kityk I, Khan SA, Bouhemadou A, Bin-Omran S, Rai D (2017) Computational investigations on band structure and electronic features of chromium-based carbides and nitride Cr3PX (X = C and N) through the FP-APW+ LO approach. Superlattice Microsoft 109:1–12

    Article  CAS  Google Scholar 

  50. Arikan N, Yildiz GD, Yildiz YG, Iyigor A (2020) Electronic, elastic, vibrational and thermodynamic properties of HfIrX (X = As, Sb and Bi) compounds: insights from DFT-based computer simulation. J Electron Mater 49:1–11

    Article  Google Scholar 

  51. Zhou D, Liu J, Xu S, Peng P (2012) Thermal stability and elastic properties of Mg2X (X = Si, Ge, Sn, Pb) phases from first-principle calculations. Comput Mater Sci 51(1):409–414

    Article  CAS  Google Scholar 

  52. Slack GA (1973) Non-metallic crystals with high thermal conductivity. J Phys Chem Solids 34:321

    Article  CAS  Google Scholar 

  53. Otero-de-la-Roza A, Abbasi-Perez D, Luana V (2011) Gibbs2: a new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Comput Phys Commun 182:2232–2248

    Article  CAS  Google Scholar 

  54. Kumar A, Kumar M, Singh RP (2021) Magnetic, opto-electronic, and thermodynamic properties of half-metallic double perovskite oxide, Ba2YbTaO6: a density functional theory study. J Mater Sci Mater Electron 32:12951–12965

    Article  CAS  Google Scholar 

  55. Mebed MA, Al-Qaisi S, Ali MA (2022) Study of optoelectronic and thermoelectric properties of double perovskites Rb2AgBiX6 (X= Br, I): by DFT approach. Eur Phys J Plus 137(8):1–8

    Article  Google Scholar 

Download references

Funding

Any agency does not fund the research work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors (Bharti Gurunani and Dinesh C. Gupta) have made significant contributions to the research. Bharti Gurunani contributed to conceptualization methodology, data curation, and writing—original draft. Dinesh C. Gupta contributed to investigation, supervision, software, validation, review, and modification the manuscript.

Corresponding author

Correspondence to Dinesh C. Gupta.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Scott Beckman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurunani, B., Gupta, D.C. Exploring the multifaceted properties: structural, electronic, magnetic, mechanical, thermodynamic, transport, and optical characteristics of rhodium-based half-Heusler alloys. J Mater Sci 59, 12502–12525 (2024). https://doi.org/10.1007/s10853-024-09942-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09942-5

Navigation