Skip to main content
Log in

A review on metal extraction from waste printed circuit boards (wPCBs)

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrical and electronic components, the silent orchestrators of our technological symphony, have been crucial for enabling societal advances. From the simple beginnings of vacuum tubes to the complex circuitry in today’s smartphones, the role and type of electronic components have continued to evolve. The components of electrical and electronic equipment once it has reached the end of its useful life as a product are called electronic waste (e-waste). The exponential growth of electronic devices has made e-waste management an important environmental issue. Improper disposal of e-waste to landfills has serious environmental consequences for the global ecosystem. The majority of discarded e-waste such as computers, mobile phones, televisions, printers, and so on, are embedded with printed circuit boards (PCBs), which are an essential and basic component. PCBs of e-waste contain many different metals including precious metals (Ag, Au, Pd, Pt, etc.), critical elements (Li, Ni, Ga, graphite, rare earth elements, etc.) and non-critical metals (Al and Fe) in varying percentages depending on the electronics. In the emerging era of circular economy recycling, waste printed circuit boards (wPCBs) of any e-waste are seen as an alternative to processing mining ores to meet future metals demand. Different recycling methods such as mechanical separation, pyrometallurgy, hydrometallurgy, biohydrometallurgy, pyrolysis, electrolysis and supercritical fluid technologies have been explored to extract the valuable metals from e-waste. This article aims to provide a critical review of the different recycling routes for e-waste, with a focus on the emerging supercritical fluid technologies (SFT), and their opportunities and challenges. This review will compare the emerging SFTs for existing processes used in industry and other alternative treatment methods. The specific areas of comparison include technical complexity and environmental impacts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

Data availability

No data were used for the research described in the article.

Abbreviations

ABS:

Acrylonitrile butadiene styrene

CHPcBFR:

Computer housing plastic containing brominated flame retardant

CPU:

Computer processing units

Cu:

Copper

DMC:

Dough molding compound

E-Waste:

Electrical and electronic waste

HIPS:

High impact polystyrene

LCA:

Life cycle analysis

MMT:

Million metric tons (1,000,000 MT)

MT:

Metric tons (1000 kg)

NR:

Not reported

PA:

Polyamide

PBT:

Polybutylene terephthalate

PC:

Polycarbonate

PC:

Personal computers

PCBs:

Printed circuit boards

PDEs:

Polybrominated diphenyl ethers

PE:

Polyethylene

PGM:

Platinum group metals

PMMA:

Poly(methyl methacrylate)

PS:

Polystyrene

PP:

Polypropylene

PVC:

Polyvinyl chloride

REM:

Rare earth metals

ScCO2 :

Supercritical CO2

ScM:

Supercritical methanol

SCW:

Supercritical water

SMC:

Sheet molding compound

TBBPA:

Tetrabromobisphenol-A

wPCBs:

Waste printed circuit boards

wRAM:

Waste random access memory

wLCD:

Waste liquid crystal display

wTC:

Waste tantalum capacitor

wIC:

Waste integrated circuit

References

  1. Hoang AQ, Tue NM, Tu MB, Suzuki G, Matsukami H, Tuyen LH, Viet PH, Kunisue T, Sakai S-i, Takahashi S (2023) A review on management practices, environmental impacts, and human exposure risks related to electrical and electronic waste in Vietnam: findings from case studies in informal e-waste recycling areas. Environ Geochem Health 45(6):2705–2728

    Article  CAS  PubMed  Google Scholar 

  2. Kumar A, Holuszko M, Espinosa DCR (2017) E-waste: an overview on generation, collection, legislation and recycling practices. Resour Conserv Recycl 122:32–42

    Article  Google Scholar 

  3. Baldé CP, Forti V, Gray V, Kuehr R, Stegmann P (2017) The global e-waste monitor 2017: quantities, flows and resources. United Nations university, international telecommunication union, and …

  4. Nithya R, Sivasankari C, Thirunavukkarasu A (2021) Electronic waste generation, regulation and metal recovery: a review. Environ Chem Lett 19:1347–1368

    Article  CAS  Google Scholar 

  5. Kumar A, Holuszko ME, Janke T (2018) Characterization of the non-metal fraction of the processed waste printed circuit boards. Waste Manage 75:94–102

    Article  CAS  Google Scholar 

  6. Habib K, Mohammadi E, Withanage SV (2023) A first comprehensive estimate of electronic waste in Canada. J Hazard Mater 448:130865

    Article  CAS  PubMed  Google Scholar 

  7. Forti V, Balde CP, Kuehr R, Bel G (2020) The global e-waste monitor 2020: quantities, flows and the circular economy potential

  8. Regulations for Electronics Stewardship (2024) US EPA

  9. Botelho Junior AB, da Silva M, Camargo P, Munchen D, Cenci M, Bertuol DA, Veit HM, Tenório JAS, Espinosa DCR (2024) Electronic waste in emerging countries: current scenario of generation, policies, and recycling technologies regarding the coronavirus pandemic. Int J Environ Sci Technol 21(1):1121–1140

    Article  Google Scholar 

  10. Pradhan JK, Kumar S (2014) Informal e-waste recycling: environmental risk assessment of heavy metal contamination in Mandoli industrial area, Delhi, India. Environ Sci Pollut Res 21:7913–7928

    Article  CAS  Google Scholar 

  11. Mir S, Dhawan N (2022) A comprehensive review on the recycling of discarded printed circuit boards for resource recovery. Resour Conserv Recycl 178:106027

    Article  CAS  Google Scholar 

  12. Khanna R, Saini R, Park M, Ellamparuthy G, Biswal S, Mukherjee P (2020) Factors influencing the release of potentially toxic elements (PTEs) during thermal processing of electronic waste. Waste Manage 105:414–424

    Article  CAS  Google Scholar 

  13. Işıldar A, Rene ER, van Hullebusch ED, Lens PN (2018) Electronic waste as a secondary source of critical metals: management and recovery technologies. Resour Conserv Recycl 135:296–312

    Article  Google Scholar 

  14. Das P, Gabriel J-CP, Tay CY, Lee J-M (2021) Value-added products from thermochemical treatments of contaminated e-waste plastics. Chemosphere 269:129409

    Article  CAS  PubMed  Google Scholar 

  15. Deubzer O, Herreras L, Hajosi E, Hilbert I, Buchert M, Wuisan L, Zonneveld N (2019) Baseline and gap/obstacle analysis of standards and regulations. CEWASTE voluntary certification scheme for waste treatment

  16. Supanchaiyamat N, Hunt AJ (2019) Conservation of critical elements of the periodic table. Chemsuschem 12(2):397–403

    Article  CAS  PubMed  Google Scholar 

  17. Pant D, Joshi D, Upreti MK, Kotnala RK (2012) Chemical and biological extraction of metals present in e waste: a hybrid technology. Waste Manage 32(5):979–990

    Article  CAS  Google Scholar 

  18. Awasthi AK, Li J, Koh L, Ogunseitan OA (2019) Circular economy and electronic waste. Nat Electron 2(3):86–89

    Article  Google Scholar 

  19. Zeng X, Mathews JA, Li J (2018) Urban mining of e-waste is becoming more cost-effective than virgin mining. Environ Sci Technol 52(8):4835–4841

    Article  CAS  PubMed  Google Scholar 

  20. Singh A, Yadav A, Le TT, Singh S (2023) Recycling of electronic waste for circular economy goals: systematic literature review. Int J Glob Bus Compet 18(2):145��161

    Google Scholar 

  21. Gamage LE, Basak A, Pramanik A, Prakash C, Shankar S, Debnath S, Dixit A, Chattopadhyaya S, Ramakrishana S (2023) Recycling of gold and silver from electronic waste: a review. Mater Circ Econ 5(1):8

    Article  Google Scholar 

  22. Dutta D, Rautela R, Gujjala LKS, Kundu D, Sharma P, Tembhare M, Kumar S (2023) A review on recovery processes of metals from e-waste: a green perspective. Sci Total Environ 859:160391

    Article  CAS  PubMed  Google Scholar 

  23. Patil AB, Paetzel V, Struis RP, Ludwig C (2022) Separation and recycling potential of rare earth elements from energy systems: feed and economic viability review. Separations 9(3):56

    Article  CAS  Google Scholar 

  24. Dutta D, Kumari A, Panda R, Jha S, Gupta D, Goel S, Jha MK (2018) Close loop separation process for the recovery of Co, Cu, Mn, Fe and Li from spent lithium-ion batteries. Sep Purif Technol 200:327–334

    Article  CAS  Google Scholar 

  25. Naseri T, Pourhossein F, Mousavi SM, Kaksonen AH, Kuchta K (2022) Manganese bioleaching: an emerging approach for manganese recovery from spent batteries. Rev Environ Sci Bio/Technol 21(2):447–468

    Article  CAS  Google Scholar 

  26. Schuster J, Ebin B (2021) Investigation of indium and other valuable metals leaching from unground waste LCD screens by organic and inorganic acid leaching. Sep Purif Technol 279:119659

    Article  CAS  Google Scholar 

  27. Hsu E, Barmak K, West AC, Park A-HA (2019) Advancements in the treatment and processing of electronic waste with sustainability: a review of metal extraction and recovery technologies. Green Chem 21(5):919–936

    Article  CAS  Google Scholar 

  28. Raju RD, Reddy DV (2017) Metals for electric vehicles: attributes. Nat Resour Res Dev 10(5):1

    Google Scholar 

  29. Khaliq A, Rhamdhani MA, Brooks G, Masood S (2014) Metal extraction processes for electronic waste and existing industrial routes: a review and Australian perspective. Resources 3(1):152–179

    Article  Google Scholar 

  30. https://www.usgs.gov/centers/national-minerals-information-center/mineral-industry-surveys

  31. Bizzo WA, Figueiredo RA, De Andrade VF (2014) Characterization of printed circuit boards for metal and energy recovery after milling and mechanical separation. Materials 7(6):4555–4566

    Article  PubMed  PubMed Central  Google Scholar 

  32. Perkins D (2022) Minerology—free textbook for colleg-level minerology courses

  33. https://pmr.umicore.com/en/recyclable/e-scrap.

  34. Golev A, Schmeda-Lopez DR, Smart SK, Corder GD, McFarland EW (2016) Where next on e-waste in Australia? Waste Manage 58:348–358

    Article  Google Scholar 

  35. Li H, Eksteen J, Oraby E (2018) Hydrometallurgical recovery of metals from waste printed circuit boards (WPCBs): current status and perspectives: a review. Resour Conserv Recycl 139:122–139

    Article  Google Scholar 

  36. Priya A, Hait S (2018) Comprehensive characterization of printed circuit boards of various end-of-life electrical and electronic equipment for beneficiation investigation. Waste Manage 75:103–123

    Article  Google Scholar 

  37. Kaya M (2016) Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Manage 57:64–90

    Article  CAS  Google Scholar 

  38. Hagelüken C (2006) Recycling of electronic scrap at Umicore’s integrated metals smelter and refinery. Erzmetall 59(3):152–161

    Google Scholar 

  39. www.pmm.umicore.com/en/prices/gold/.

  40. Feldman AV (1993) Method for processing scrap of electronic instruments. Google Patents

  41. Kim B-S, Lee J-c, Seo S-P, Park Y-K, Sohn HY (2004) A process for extracting precious metals from spent printed circuit boards and automobile catalysts. Jom 56:55–58

    Article  CAS  Google Scholar 

  42. De Marco I, Caballero B, Chomón M, Laresgoiti M, Torres A, Fernández G, Arnaiz S (2008) Pyrolysis of electrical and electronic wastes. J Anal Appl Pyrol 82(2):179–183

    Article  Google Scholar 

  43. Flandinet L, Tedjar F, Ghetta V, Fouletier J (2012) Metals recovering from waste printed circuit boards (WPCBs) using molten salts. J Hazard Mater 213:485–490

    Article  PubMed  Google Scholar 

  44. Menetti RP, Tenório SAJ (1995) Recycling of precious metals from electronic scraps. In: Proceedings of the 50th annual congress of ABM, São Pedro, SP, Brazil, 1–4 August, pp 625–634

  45. Goosey M, Kellner R (2003) Recycling technologies for the treatment of end of life printed circuit boards (PCBs). Circuit World 29(3):33–37

    Article  CAS  Google Scholar 

  46. Hino T, Agawa R, Moriya Y, Nishida M, Tsugita Y, Araki T (2009) Techniques to separate metal from waste printed circuit boards from discarded personal computers. J Mater Cycles Waste Manage 11:42–54

    Article  CAS  Google Scholar 

  47. Iji M, Yokoyama S (1997) Recycling of printed wiring boards with mounted electronic components. Circuit World 23(3):10–15

    Article  Google Scholar 

  48. Wang H, Gu G-h, Qi Y-f (2005) Crushing performance and resource characteristic of printed circuit board scrap. J Cent South Univ Technol 12(5):552–555

    Article  Google Scholar 

  49. Yoo J-M, Jeong J, Yoo K, Lee J-c, Kim W (2009) Enrichment of the metallic components from waste printed circuit boards by a mechanical separation process using a stamp mill. Waste Manage 29(3):1132–1137

    Article  CAS  Google Scholar 

  50. Theo L (1998) Integrated recycling of non-ferrous metals at Boliden Ltd. Ronnskar smelter. Proceedings of the 1998 IEEE international symposium on electronics and the environment. ISEE-1998 (Cat. No. 98CH36145), ate 1998. IEEE, pp 42–47

  51. Creamer NJ, Baxter-Plant VS, Henderson J, Potter M, Macaskie LE (2006) Palladium and gold removal and recovery from precious metal solutions and electronic scrap leachates by Desulfovibrio desulfuricans. Biotech Lett 28:1475–1484

    Article  CAS  Google Scholar 

  52. Oliveira PC, Cabral M, Nogueira CA, Margarido F (2010) Printed circuit boards recycling: characterization of granulometric fractions from shredding process. Materials science forum, ate 2010. Trans Tech Publ, pp 1434–1439

  53. Cui H, Anderson C (2020) Hydrometallurgical treatment of waste printed circuit boards: bromine leaching. Metals 10(4):462

    Article  CAS  Google Scholar 

  54. Huang K, Guo J, Xu Z (2009) Recycling of waste printed circuit boards: a review of current technologies and treatment status in China. J Hazard Mater 164(2–3):399–408

    Article  CAS  PubMed  Google Scholar 

  55. Jie G, Ying-Shun L, Mai-Xi L (2008) Product characterization of waste printed circuit board by pyrolysis. J Anal Appl Pyrol 83(2):185–189

    Article  Google Scholar 

  56. Yazıcı E, Deveci H, Alp I, Akcil A, Yazıcı R (2010) Characterisation of computer printed circuit boards for hazardous properties and beneficiation studies

  57. Veit HM, de Pereira CC, Bernardes AM (2002) Using mechanical processing in recycling printed wiring boards. Jom 54(6):45–47

    Article  CAS  Google Scholar 

  58. Kaya M (2019) Electronic waste and printed circuit board recycling technologies. Springer

    Book  Google Scholar 

  59. Cui J, Zhang L (2008) Metallurgical recovery of metals from electronic waste: a review. J Hazard Mater 158(2–3):228–256

    Article  CAS  PubMed  Google Scholar 

  60. Zhang L, Xu Z (2016) A review of current progress of recycling technologies for metals from waste electrical and electronic equipment. J Clean Prod 127:19–36

    Article  Google Scholar 

  61. Hong Y, Valix M (2014) Bioleaching of electronic waste using acidophilic sulfur oxidising bacteria. J Clean Prod 65:465–472

    Article  CAS  Google Scholar 

  62. Sun M, Wang Y, Hong J, Dai J, Wang R, Niu Z, Xin B (2016) Life cycle assessment of a bio-hydrometallurgical treatment of spent ZnMn batteries. J Clean Prod 129:350–358

    Article  CAS  Google Scholar 

  63. Faraji F, Golmohammadzadeh R, Pickles CA (2022) Potential and current practices of recycling waste printed circuit boards: a review of the recent progress in pyrometallurgy. J Environ Manage 316:115242

    Article  CAS  PubMed  Google Scholar 

  64. Umicore Precious Metals Refining Excellence in Recycling. https://docslib.org/doc/3432233/umicore-precious-metals-refining-excellence-in-recycling

  65. Foong SY, Liew RK, Yang Y, Cheng YW, Yek PNY, Mahari WAW, Lee XY, Han CS, Vo D-VN, Van Le Q (2020) Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: progress, challenges, and future directions. Chem Eng J 389:124401

    Article  CAS  Google Scholar 

  66. Kim S, Lee Y, Lin K-YA, Hong E, Kwon EE, Lee J (2020) The valorization of food waste via pyrolysis. J Clean Prod 259:120816

    Article  CAS  Google Scholar 

  67. Wyrzykowska-Ceradini B, Gullett BK, Tabor D, Touati A (2011) PBDDs/Fs and PCDDs/Fs in the raw and clean flue gas during steady state and transient operation of a municipal waste combustor. Environ Sci Technol 45(13):5853–5860

    Article  CAS  PubMed  Google Scholar 

  68. Wyrzykowska-Ceradini B, Gullett BK, Tabor D, Touati A (2011) Waste combustion as a source of ambient air polybrominated diphenylethers (PBDEs). Atmos Environ 45(24):4008–4014

    Article  CAS  Google Scholar 

  69. Jung J-M, Oh J-I, Baek K, Lee J, Kwon EE (2018) Biodiesel production from waste cooking oil using biochar derived from chicken manure as a porous media and catalyst. Energy Convers Manage 165:628–633

    Article  CAS  Google Scholar 

  70. Kwon EE, Lee T, Ok YS, Tsang DC, Park C, Lee J (2018) Effects of calcium carbonate on pyrolysis of sewage sludge. Energy 153:726–731

    Article  CAS  Google Scholar 

  71. Kim S, Lee N, Lee J (2020) Pyrolysis for nylon 6 monomer recovery from teabag waste. Polymers 12(11):2695

    Article  PubMed  PubMed Central  Google Scholar 

  72. Long L, Sun S, Zhong S, Dai W, Liu J, Song W (2010) Using vacuum pyrolysis and mechanical processing for recycling waste printed circuit boards. J Hazard Mater 177(1–3):626–632

    Article  CAS  PubMed  Google Scholar 

  73. Caballero B, De Marco I, Adrados A, López-Urionabarrenechea A, Solar J, Gastelu N (2016) Possibilities and limits of pyrolysis for recycling plastic rich waste streams rejected from phones recycling plants. Waste Manage 57:226–234

    Article  CAS  Google Scholar 

  74. Liu W-J, Jiang H, Yu H-Q (2015) Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 115(22):12251–12285

    Article  CAS  PubMed  Google Scholar 

  75. Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg 38:68–94

    Article  CAS  Google Scholar 

  76. Kantarelis E, Yang W, Blasiak W, Forsgren C, Zabaniotou A (2011) Thermochemical treatment of e-waste from small household appliances using highly pre-heated nitrogen-thermogravimetric investigation and pyrolysis kinetics. Appl Energy 88(3):922–929

    Article  CAS  Google Scholar 

  77. Sun J, Wang W, Liu Z, Ma C (2011) Recycling of waste printed circuit boards by microwave-induced pyrolysis and featured mechanical processing. Ind Eng Chem Res 50(20):11763–11769

    Article  CAS  Google Scholar 

  78. Krishna JJ, Damir SS, Vinu R (2021) Pyrolysis of electronic waste and their mixtures: kinetic and pyrolysate composition studies. J Environ Chem Eng 9(4):105382

    Article  CAS  Google Scholar 

  79. Chien Y-C, Wang HP, Lin K-S, Yang Y-W (2000) Oxidation of printed circuit board wastes in supercritical water. Water Res 34(17):4279–4283

    Article  CAS  Google Scholar 

  80. Yu M, Zhang C, Li X, Liu Y, Siyal AA, Qu J, Dai J, Yuan Y, Jin Y, Liu C (2023) Products and bromine migration characteristics of non-metallic components of waste printed circuit boards pyrolysis in a fluidized bed pyrolyzer. Fuel Process Technol 250:107898

    Article  CAS  Google Scholar 

  81. Tansel B (2022) PFAS use in electronic products and exposure risks during handling and processing of e-waste: a review. J Environ Manage 316:115291

    Article  CAS  PubMed  Google Scholar 

  82. Habashi F (2009) Recent trends in extractive metallurgy. J Min Metall B: Metall 45(1):1–13

    Article  CAS  Google Scholar 

  83. Becci A, Amato A, Fonti V, Karaj D, Beolchini F (2020) An innovative biotechnology for metal recovery from printed circuit boards. Resour Conserv Recycl 153:104549

    Article  Google Scholar 

  84. Sethurajan M, Huguenot D, Jain R, Lens PN, Horn HA, Figueiredo LH, van Hullebusch ED (2017) Leaching and selective zinc recovery from acidic leachates of zinc metallurgical leach residues. J Hazard Mater 324:71–82

    Article  CAS  PubMed  Google Scholar 

  85. Sethurajan M, van Hullebusch ED, Nancharaiah YV (2018) Biotechnology in the management and resource recovery from metal bearing solid wastes: recent advances. J Environ Manage 211:138–153

    Article  CAS  PubMed  Google Scholar 

  86. Birloaga I, Vegliò F (2016) Study of multi-step hydrometallurgical methods to extract the valuable content of gold, silver and copper from waste printed circuit boards. J Environ Chem Eng 4(1):20–29

    Article  CAS  Google Scholar 

  87. Ding Y, Zhang S, Liu B, Zheng H, Chang C-c, Ekberg C (2019) Recovery of precious metals from electronic waste and spent catalysts: a review. Resour Conserv Recycl 141:284–298

    Article  Google Scholar 

  88. Tuncuk A, Stazi V, Akcil A, Yazici EY, Deveci H (2012) Aqueous metal recovery techniques from e-scrap: hydrometallurgy in recycling. Miner Eng 25(1):28–37

    Article  CAS  Google Scholar 

  89. Li K, Xu Z (2019) A review of current progress of supercritical fluid technologies for e-waste treatment. J Clean Prod 227:794–809

    Article  CAS  Google Scholar 

  90. Garlapati VK (2016) E-waste in India and developed countries: management, recycling, business and biotechnological initiatives. Renew Sustain Energy Rev 54:874–881

    Article  CAS  Google Scholar 

  91. Anjum F, Shahid M, Akcil A (2012) Biohydrometallurgy techniques of low grade ores: a review on black shale. Hydrometallurgy 117:1–12

    Article  Google Scholar 

  92. Brierley J, Brierley C (2001) Present and future commercial applications of biohydrometallurgy. Hydrometallurgy 59(2–3):233–239

    Article  CAS  Google Scholar 

  93. Wang R, Xu Z (2014) Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): a review. Waste Manage 34(8):1455–1469

    Article  CAS  Google Scholar 

  94. Ghosh B, Ghosh M, Parhi P, Mukherjee P, Mishra B (2015) Waste printed circuit boards recycling: an extensive assessment of current status. J Clean Prod 94:5–19

    Article  CAS  Google Scholar 

  95. Kim E-y, Kim M-s, Lee J-c, Yoo K, Jeong J (2010) Leaching behavior of copper using electro-generated chlorine in hydrochloric acid solution. Hydrometallurgy 100(3–4):95–102

    Article  CAS  Google Scholar 

  96. Kim E-y, Kim M-s, Lee J-c, Jeong J, Pandey B (2011) Leaching kinetics of copper from waste printed circuit boards by electro-generated chlorine in HCl solution. Hydrometallurgy 107(3–4):124–132

    Article  CAS  Google Scholar 

  97. Casas J, Acuña-Goycolea P, Crisóstomo G, Cifuentes L (2008) Processing of a ferric anolyte produced by a copper electrowinning cell based on reactive electro dialysis. Miner Eng 21(7):525–532

    Article  CAS  Google Scholar 

  98. Beukes N, Badenhorst J (2009) Copper electrowinning: theoretical and practical design. J South Afr Inst Min Metall 109(6):343–356

    Google Scholar 

  99. Lister TE, Wang P, Anderko A (2014) Recovery of critical and value metals from mobile electronics enabled by electrochemical processing. Hydrometallurgy 149:228–237

    Article  CAS  Google Scholar 

  100. Fogarasi S, Imre-Lucaci F, Ilea P, Imre-Lucaci Á (2013) The environmental assessment of two new copper recovery processes from waste printed circuit boards. J Clean Prod 54:264–269

    Article  CAS  Google Scholar 

  101. Fogarasi S, Imre-Lucaci F, Imre-Lucaci Á, Ilea P (2014) Copper recovery and gold enrichment from waste printed circuit boards by mediated electrochemical oxidation. J Hazard Mater 273:215–221

    Article  CAS  PubMed  Google Scholar 

  102. Jadhao PR, Ahmad E, Pant K, Nigam K (2022) Advancements in the field of electronic waste recycling: critical assessment of chemical route for generation of energy and valuable products coupled with metal recovery. Sep Purif Technol 289:120773

    Article  CAS  Google Scholar 

  103. Vázquez L, Torres CF, Fornari T, Grigelmo N, Señoráns FJ, Reglero G (2006) Supercritical fluid extraction of minor lipids from pretreated sunflower oil deodorizer distillates. Eur J Lipid Sci Technol 108(8):659–665

    Article  Google Scholar 

  104. Preetam A, Mishra S, Naik S, Pant K, Kumar V (2022) A sustainable approach for material and metal recovery from e-waste using subcritical to supercritical methanol. Waste Manage 145:29–37

    Article  CAS  Google Scholar 

  105. Xiu F-R, Zhang F-S (2010) Materials recovery from waste printed circuit boards by supercritical methanol. J Hazard Mater 178(1–3):628–634

    Article  CAS  PubMed  Google Scholar 

  106. Chen J, Meng T, Leng E, Jiaqiang E (2022) Review on metal dissolution characteristics and harmful metals recovery from electronic wastes by supercritical water. J Hazard Mater 424:127693

    Article  CAS  PubMed  Google Scholar 

  107. Wagner W, Pruß A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31(2):387–535

    Article  CAS  Google Scholar 

  108. Peterson AA, Vogel F, Lachance RP, Fröling M, Antal MJ Jr, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub-and supercritical water technologies. Energy Environ Sci 1(1):32–65

    Article  CAS  Google Scholar 

  109. Kalinichev A, Churakov S (2001) Thermodynamics and structure of molecular clusters in supercritical water. Fluid Phase Equilib 183:271–278

    Article  Google Scholar 

  110. Keshri S, Mandal R, Tembe B (2016) Solvation structures and dynamics of alkaline earth metal halides in supercritical water: a molecular dynamics study. Chem Phys 476:80–90

    Article  CAS  Google Scholar 

  111. Marti J, Sala J, Guardia E, Gordillo M (2009) Molecular dynamics simulations of supercritical water confined within a carbon-slit pore. Phys Rev E 79(3):031606

    Article  CAS  Google Scholar 

  112. Rana MK, Chandra A (2012) Solvation structure of nanoscopic hydrophobic solutes in supercritical water: results for varying thickness of hydrophobic walls, solute–solvent interaction and solvent density. Chem Phys 408:28–35

    Article  CAS  Google Scholar 

  113. Savage PE (1999) Organic chemical reactions in supercritical water. Chem Rev 99(2):603

    Article  CAS  PubMed  Google Scholar 

  114. Li K, Zhang L, Xu Z (2019) Decomposition behavior and mechanism of epoxy resin from waste integrated circuits under supercritical water condition. J Hazard Mater 374:356–364

    Article  CAS  PubMed  Google Scholar 

  115. Xing M, Zhang F-S (2013) Degradation of brominated epoxy resin and metal recovery from waste printed circuit boards through batch sub/supercritical water treatments. Chem Eng J 219:131–136

    Article  CAS  Google Scholar 

  116. Liu K, Zhang Z, Zhang F-S (2016) Advanced degradation of brominated epoxy resin and simultaneous transformation of glass fiber from waste printed circuit boards by improved supercritical water oxidation processes. Waste Manage 56:423–430

    Article  CAS  Google Scholar 

  117. Song J, Fan H, Ma J, Han B (2013) Conversion of glucose and cellulose into value-added products in water and ionic liquids. Green Chem 15(10):2619–2635

    Article  CAS  Google Scholar 

  118. Yin J, Li G, He W, Huang J, Xu M (2011) Hydrothermal decomposition of brominated epoxy resin in waste printed circuit boards. J Anal Appl Pyrol 92(1):131–136

    Article  CAS  Google Scholar 

  119. Wang Y, Zhang F-S (2012) Degradation of brominated flame retardant in computer housing plastic by supercritical fluids. J Hazard Mater 205:156–163

    Article  PubMed  Google Scholar 

  120. Li K, Xu Z (2015) Application of supercritical water to decompose brominated epoxy resin and environmental friendly recovery of metals from waste memory module. Environ Sci Technol 49(3):1761–1767

    Article  CAS  PubMed  Google Scholar 

  121. Matsumoto Y, Oshima Y (2014) Au and Cu recovery from printed boards by decomposition of epoxy resin in supercritical water. J Supercrit Fluids 95:462–467

    Article  CAS  Google Scholar 

  122. Niu B, Chen Z, Xu Z (2017) Recovery of tantalum from waste tantalum capacitors by supercritical water treatment. ACS Sustain Chem Eng 5(5):4421–4428

    Article  CAS  Google Scholar 

  123. Wang R, Chen Y, Xu Z (2015) Recycling acetic acid from polarizing film of waste liquid crystal display panels by sub/supercritical water treatments. Environ Sci Technol 49(10):5999–6008

    Article  CAS  PubMed  Google Scholar 

  124. Xiu F-R, Qi Y, Zhang F-S (2014) Co-treatment of waste printed circuit boards and polyvinyl chloride by subcritical water oxidation: removal of brominated flame retardants and recovery of Cu and Pb. Chem Eng J 237:242–249

    Article  CAS  Google Scholar 

  125. Sarrade S, Féron D, Rouillard F, Perrin S, Robin R, Ruiz J-C, Turc H-A (2017) Overview on corrosion in supercritical fluids. J Supercrit Fluids 120:335–344

    Article  CAS  Google Scholar 

  126. Vadillo V, Sánchez-Oneto J, Portela JR, Martinez de la Ossa EJ (2013) Problems in supercritical water oxidation process and proposed solutions. Ind Eng Chem Res 52(23):7617–7629

    Article  CAS  Google Scholar 

  127. Asselin E, Alfantazi A, Rogak S (2010) Corrosion of nickel–chromium alloys, stainless steel and niobium at supercritical water oxidation conditions. Corros Sci 52(1):118–124

    Article  CAS  Google Scholar 

  128. Gao X, Wu X, Zhang Z, Guan H, Han E-h (2007) Characterization of oxide films grown on 316L stainless steel exposed to H2O2-containing supercritical water. J Supercrit Fluids 42(1):157–163

    Article  CAS  Google Scholar 

  129. Asselin E, Nazari G, Alfantazi A, Rogak S (2009) Corrosion of alloy 316 SCWO reactor tubing in ammoniacal sulfate solution. NACE CORROSION, ate 2009. NACE, pp NACE-09254

  130. Yang J, Wang S, Li Y, Zhang Y, Xu D (2019) Novel design concept for a commercial-scale plant for supercritical water oxidation of industrial and sewage sludge. J Environ Manage 233:131–140

    Article  CAS  PubMed  Google Scholar 

  131. Tang X, Zheng Y, Liao Z, Wang Y, Yang J, Cai J (2021) A review of developments in process flow for supercritical water oxidation. Chem Eng Commun 208(10):1494–1510

    Article  CAS  Google Scholar 

  132. Marrone PA (2013) Supercritical water oxidation—current status of full-scale commercial activity for waste destruction. J Supercrit Fluids 79:283–288

    Article  CAS  Google Scholar 

  133. Beginners guide to hydrometallurgical autoclave processes. https://www.metso.com/insights/blog/mining-and-metals/beginners-guide-to-hydrometallurgical-autoclave-processes/

  134. Kritzer P, Boukis N, Dinjus E (1999) The corrosion of nickel-base alloy 625 in sub-and supercritical aqueous solutions of oxygen: a long time study. J Mater Sci Lett 18(22):1845–1847

    Article  CAS  Google Scholar 

  135. Tang X, Wang S, Qian L, Li Y, Lin Z, Xu D (2015) Corrosion behavior of nickel base alloys, stainless steel and titanium alloy in supercritical water containing chloride, phosphate and oxygen. Chem Eng Res Des 100:530–541

    Article  CAS  Google Scholar 

  136. Bermejo M, Cantero F, Cocero M (2008) Supercritical water oxidation of feeds with high ammonia concentrations: pilot plant experimental results and modeling. Chem Eng J 137(3):542–549

    Article  CAS  Google Scholar 

  137. Yang J, Wang S, Xu D, Guo Y, Yang C, Li Y (2017) Effect of ammonium chloride on corrosion behavior of Ni-based alloys and stainless steel in supercritical water gasification process. Int J Hydrog Energy 42(31):19788–19797

    Article  CAS  Google Scholar 

  138. Zhang Y, Wang S, Li Y, Zhang J, Xu D, Yang C, Yang J, Li J, Xu T (2020) Inorganic salts in sub-/supercritical water—part a: behavior characteristics and mechanisms. Desalination 496:114674

    Article  CAS  Google Scholar 

  139. Xu D, Huang C, Wang S, Lin G, Guo Y (2015) Salt deposition problems in supercritical water oxidation. Chem Eng J 279:1010–1022

    Article  CAS  Google Scholar 

  140. Zhang N-q, Zhu Z-l, Xu H, Mao X-p, Li J (2016) Oxidation of ferritic and ferritic–martensitic steels in flowing and static supercritical water. Corros Sci 103:124–131

    Article  CAS  Google Scholar 

  141. Marrone PA, Hong GT (2008) Corrosion control methods in supercritical water oxidation and gasification processes. Nace Corrosion, p NACE-08422

  142. Cohen LS, Jensen D, Lee G, Ordway DW (1998) Hydrothermal oxidation of Navy excess hazardous materials. Waste Manage 18(6–8):539–546

    Article  CAS  Google Scholar 

  143. Crooker P, Ahluwalia K, Fan Z, Prince J (2000) Operating results from supercritical water oxidation plants. Ind Eng Chem Res 39(12):4865–4870

    Article  CAS  Google Scholar 

  144. Foy BR, Waldthausen K, Sedillo MA, Buelow SJ (1996) Hydrothermal processing of chlorinated hydrocarbons in a titanium reactor. Environ Sci Technol 30(9):2790–2799

    Article  CAS  Google Scholar 

  145. Hong GT, Killilea WR, Thomason TB (1989) Method for solids separation in a wet oxidation type process. Google Patents

  146. Wellig B, Weber M, Lieball K, Príkopský K, von Rohr PR (2009) Hydrothermal methanol diffusion flame as internal heat source in a SCWO reactor. J Supercrit Fluids 49(1):59–70

    Article  CAS  Google Scholar 

  147. Luo X, Tang R, Long C, Miao Z, Peng Q, Li C (2008) Corrosion behavior of austenitic and ferritic steels in supercritical water. Nucl Eng Technol 40(2):147–154

    Article  CAS  Google Scholar 

  148. Tan L, Ren X, Sridharan K, Allen T (2008) Corrosion behavior of Ni-base alloys for advanced high temperature water-cooled nuclear plants. Corros Sci 50(11):3056–3062

    Article  CAS  Google Scholar 

  149. Tan L, Ren X, Sridharan K, Allen T (2008) Effect of shot-peening on the oxidation of alloy 800H exposed to supercritical water and cyclic oxidation. Corros Sci 50(7):2040–2046

    Article  CAS  Google Scholar 

  150. Son S-H, Lee J-H, Lee C-H (2008) Corrosion phenomena of alloys by subcritical and supercritical water oxidation of 2-chlorophenol. J Supercrit Fluids 44(3):370–378

    Article  CAS  Google Scholar 

  151. Yi Y, Lee B, Kim S, Jang J (2006) Corrosion and corrosion fatigue behaviors of 9Cr steel in a supercritical water condition. Mater Sci Eng A 429(1–2):161–168

    Article  Google Scholar 

  152. Zhang Q, Tang R, Yin K, Luo X, Zhang L (2009) Corrosion behavior of Hastelloy C-276 in supercritical water. Corros Sci 51(9):2092–2097

    Article  CAS  Google Scholar 

  153. Bertuol DA, Amado FR, Cruz ED, Tanabe EH (2020) Metal recovery using supercritical carbon dioxide. Green sustainable process for chemical and environmental engineering and science. Elsevier, pp 85–103

  154. Blanchard LA, Brennecke JF (2001) Recovery of organic products from ionic liquids using supercritical carbon dioxide. Ind Eng Chem Res 40(1):287–292

    Article  CAS  Google Scholar 

  155. Jitpinit S, Siraworakun C, Sookklay Y, Nuithitikul K (2022) Enhancement of omega-3 content in sacha inchi seed oil extracted with supercritical carbon dioxide in semi-continuous process. Heliyon. https://doi.org/10.1016/j.heliyon.2022.e08780

    Article  PubMed  PubMed Central  Google Scholar 

  156. Inamuddin A, Asiri A, Suvardhan K (2019) Green sustainable process for chemical and environmental engineering and science. Elsevier

    Google Scholar 

  157. Sapkale G, Patil S, Surwase U, Bhatbhage P (2010) Supercritical fluid extraction. Int J Chem Sci 8(2):729–743

    CAS  Google Scholar 

  158. Friedrich J, Pryde E (1984) Supercritical CO2 extraction of lipid-bearing materials and characterization of the products. J Am Oil Chem Soc 61(2):223–228

    Article  CAS  Google Scholar 

  159. Reátegui JLP, da Fonseca Machado AP, Barbero GF, Rezende CA, Martínez J (2014) Extraction of antioxidant compounds from blackberry (Rubus sp.) bagasse using supercritical CO2 assisted by ultrasound. J Supercrit Fluids 94:223–233

    Article  Google Scholar 

  160. Sanli D, Bozbag S, Erkey C (2012) Synthesis of nanostructured materials using supercritical CO2: Part I. Physical transformations. J Mater Sci 47:2995–3025

    Article  CAS  Google Scholar 

  161. Wai CM, Wang S (1997) Supercritical fluid extraction: metals as complexes. J Chromatogr A 785(1–2):369–383

    Article  CAS  Google Scholar 

  162. Reisdörfer G, Bertuol DA, Tanabe EH (2020) Extraction of neodymium from hard disk drives using supercritical CO2 with organic acids solutions acting as cosolvents. J CO2 Util 35:277–287

    Article  Google Scholar 

  163. Bertuol DA, Machado CM, Silva ML, Calgaro CO, Dotto GL, Tanabe EH (2016) Recovery of cobalt from spent lithium-ion batteries using supercritical carbon dioxide extraction. Waste Manage 51:245–251

    Article  CAS  Google Scholar 

  164. Fayaz SM, Abdoli MA, Baghdadi M, Karbasi A (2021) Ag removal from e-waste using supercritical fluid: improving efficiency and selectivity. Int J Environ Stud 78(3):459–473

    Article  CAS  Google Scholar 

  165. Yao Y, Farac NF, Azimi G (2018) Supercritical fluid extraction of rare earth elements from nickel metal hydride battery. ACS Sustain Chem Eng 6(1):1417–1426

    Article  CAS  Google Scholar 

  166. Liu K, Zhang Z, Zhang F-S (2016) Direct extraction of palladium and silver from waste printed circuit boards powder by supercritical fluids oxidation-extraction process. J Hazard Mater 318:216–223

    Article  CAS  PubMed  Google Scholar 

  167. Calgaro CO, Schlemmer DF, Da Silva M, Maziero EV, Tanabe EH, Bertuol DA (2015) Fast copper extraction from printed circuit boards using supercritical carbon dioxide. Waste Manage 45:289–297

    Article  CAS  Google Scholar 

  168. Argenta A, Reis C, Mello G, Dotto G, Tanabe E, Bertuol D (2017) Supercritical CO2 extraction of indium present in liquid crystal displays from discarded cell phones using organic acids. J Supercrit Fluids 120:95–101

    Article  CAS  Google Scholar 

  169. Shimizu R, Sawada K, Enokida Y, Yamamoto I (2005) Supercritical fluid extraction of rare earth elements from luminescent material in waste fluorescent lamps. J Supercrit fluids 33(3):235–241

    Article  CAS  Google Scholar 

  170. Zhang J, Anawati J, Yao Y, Azimi G (2018) Aeriometallurgical extraction of rare earth elements from a NdFeB magnet utilizing supercritical fluids. ACS Sustain Chem Eng 6(12):16713–16725

    Article  CAS  Google Scholar 

  171. Golzary A, Abdoli MA (2020) Recycling of copper from waste printed circuit boards by modified supercritical carbon dioxide combined with supercritical water pre-treatment. J CO2 Util 41:101265

    Article  CAS  Google Scholar 

  172. Huang J, Yang J, Chyu MK, Wang Q, Zhu Z (2009) Continuous-distribution kinetics for degradation of polybutylene terephthalate (PBT) in supercritical methanol. Polym Degrad Stab 94(12):2142–2148

    Article  CAS  Google Scholar 

  173. Sako T, Sugeta T, Otake K, Yoda S, Takebayashi Y, Okajima I, Kamizawa C (1999) Decomposition of polyethylene 2, 6-naphthalene dicarboxylate to constituent monomers using supercritical methanol. Polym J 31(9):714–716

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Mitacs Inc. Canada and Everything Recycling Inc., Toronto, ON, Canada. We would like to extend our acknowledgement to Christopher Kelly, Graphic Designer, University Student’s Council, Western University, London, ON, Canada, for making graphical abstract for this review.

Author information

Authors and Affiliations

Authors

Contributions

James Fazari contributed to data curation, conceptualization, project administration, funding acquisition and writing—original draft. Md Zakir Hossain contributed to data curation, conceptualization, funding acquisition and writing—original draft. Paul Charpentier contributed to conceptualization, project administration, funding acquisition, supervision and writing—review and editing.

Corresponding authors

Correspondence to James Fazari, Md Zakir Hossain or Paul Charpentier.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 384 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazari, J., Hossain, M.Z. & Charpentier, P. A review on metal extraction from waste printed circuit boards (wPCBs). J Mater Sci 59, 12257–12284 (2024). https://doi.org/10.1007/s10853-024-09941-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09941-6

Navigation