Skip to main content
Log in

Stress corrosion cracking behavior and mechanism of high manganese steel in inshore SO2-polluted marine environment

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High manganese steel (HMS), widely utilized in railway transportation, often encounters the compounded challenge of high stress impact and corrosion, ultimately leading to environmentally assisted cracking. To comprehend this phenomenon, we delved into the stress corrosion cracking (SCC) behavior and mechanism of HMS in a SO2-polluted marine environment, employing both slow strain rate test (SSRT) and constant load U-bend test (CLUT). By comparing the SCC behavior in three distinct test solutions: 0.01 M NaHSO3, 0.01 M NaHSO3 with 1 wt% NaCl, and 0.01 M NaHSO3 with 3.5 wt% NaCl, we discerned the varied influence of Cl and SO2 on SCC. Analyzing the stress–strain curves from SSRT and the cross-sectional crack morphologies from CLUT provided insights into the SCC susceptibility of HMS in these solutions. Notably, the SCC susceptibility in 0.01 M NaHSO3 exceeded 40%, while in the solution containing 3.5 wt% NaCl, it significantly surpassed 65%. Further examination, including an analysis of the rust layer’s elemental distribution and phase composition, electrochemical testing of the rust layer, and an assessment of corrosion morphologies on the base metal, revealed the relative contributions of various corrosive media to SCC. This comprehensive study not only sheds light on potential SCC mechanisms but also offers valuable insights for evaluating the service life of HMS and identifying areas for performance optimization of this critical high manganese steel alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Abdallah I, Kim T, Wu X et al (2022) Oxidation kinetics and microstructure evolution of high Mn stainless-steel alloy in CO2 at 700 °C. Corros Sci 195:110013. https://doi.org/10.1016/j.corsci.2021.110013

    Article  CAS  Google Scholar 

  2. Cheng M, He P, Lei L et al (2021) Comparative studies on microstructure evolution and corrosion resistance of 304 and a newly developed high Mn and N austenitic stainless steel welded joints. Corros Sci 183:109338. https://doi.org/10.1016/j.corsci.2021.109338

    Article  CAS  Google Scholar 

  3. Wang C, Lim MK, Zhang X et al (2020) Railway and road infrastructure in the belt and road Initiative countries: estimating the impact of transport infrastructure on economic growth. Transp Res Part A Policy Pract 134:288–307. https://doi.org/10.1016/j.tra.2020.02.009

    Article  Google Scholar 

  4. De Cooman BC, Estrin Y, Kim SK (2018) Twinning-induced plasticity (TWIP) steels. Acta Mater 142:283–362. https://doi.org/10.1016/j.actamat.2017.06.046

    Article  CAS  Google Scholar 

  5. Zhu L, Yan Y, Li J et al (2015) Stress corrosion cracking at low loads: surface slip and crystallographic analysis. Corros Sci 100:619–626. https://doi.org/10.1016/j.corsci.2015.08.040

    Article  CAS  Google Scholar 

  6. Du XS, Su YJ, Li JX et al (2012) Stress corrosion cracking of A537 steel in simulated marine environments. Corros Sci 65:278–287. https://doi.org/10.1016/j.corsci.2012.08.025

    Article  CAS  Google Scholar 

  7. Zhang T, Hao L, Jiang Z et al (2023) Investigation of rare earth (RE) on improving the corrosion resistance of Zr-Ti deoxidized low alloy steel in the simulated tropic marine atmospheric environment. Corros Sci 221:111335. https://doi.org/10.1016/j.corsci.2023.111335

    Article  CAS  Google Scholar 

  8. Liu C, Li Z, Zhao B et al (2021) Stress corrosion mechanism and susceptibility of X80 steel under a disbonded coating in an acidic soil solution. J Mater Res Technol 14:533–547. https://doi.org/10.1016/j.jmrt.2021.06.092

    Article  CAS  Google Scholar 

  9. Wu W, Liu Z, Wang Q, Li X (2020) Improving the resistance of high-strength steel to SCC in a SO2-polluted marine atmosphere through Nb and Sb microalloying. Corros Sci 170:108693. https://doi.org/10.1016/j.corsci.2020.108693

    Article  CAS  Google Scholar 

  10. Zhang T, Li Y, Li X et al (2022) Integral effects of Ca and Sb on the corrosion resistance for the high strength low alloy steel in the tropical marine environment. Corros Sci 208:110708. https://doi.org/10.1016/j.corsci.2022.110708

    Article  CAS  Google Scholar 

  11. Zhang S, Yu J, Li H et al (2022) Refinement mechanism of cerium addition on solidification structure and sigma phase of super austenitic stainless steel S32654. J Mater Sci Technol 102:105–114. https://doi.org/10.1016/j.jmst.2021.06.033

    Article  CAS  Google Scholar 

  12. Zhang Q-H, Meng X-Z, Li X-R et al (2024) Effect of anions on the anodic dissolution behavior of iron: an electrochemical and density functional theory study. Corros Sci 229:111852. https://doi.org/10.1016/j.corsci.2024.111852

    Article  CAS  Google Scholar 

  13. Zhang S, Hou L, Du H et al (2020) A study on the interaction between chloride ions and CO2 towards carbon steel corrosion. Corros Sci 167:108531. https://doi.org/10.1016/j.corsci.2020.108531

    Article  CAS  Google Scholar 

  14. Jeong YJ, Kim SO, Park JS et al (2021) Strong and ductile Fe-24Mn-3Cr alloy resistant against erosion-corrosion. npj Mater Degrad 5:47. https://doi.org/10.1038/s41529-021-00195-0

    Article  CAS  Google Scholar 

  15. Kang S, Yan L, Yan X et al (2022) Effect of chloride ion concentration on stress corrosion cracking and electrochemical corrosion of high manganese steel. High Temp Mater Process 41:389–402. https://doi.org/10.1515/htmp-2022-0038

    Article  CAS  Google Scholar 

  16. Shao Z, Yu D, Shao D et al (2024) A protective role of Cl ion in corrosion of stainless steel. Corros Sci 226:111631. https://doi.org/10.1016/j.corsci.2023.111631

    Article  CAS  Google Scholar 

  17. Lasek S, Mazancova E (2013) Corrosion behaviour of selected high manganese austenitic steels. In: Metal 2013: 22nd International conference on metallurgy and materials, pp 610–615

  18. Wang B, Mu Y, Shen F et al (2024) Identification of corrosion factors in blast furnace gas pipe network with corrosion big data online monitoring technology. Corros Sci 230:111906. https://doi.org/10.1016/j.corsci.2024.111906

    Article  CAS  Google Scholar 

  19. Yang S, Che Z, Liu W et al (2023) Influence mechanism of heat treatment on corrosion resistance of Te-containing 15–5PH stainless steel. Corros Sci 225:111610. https://doi.org/10.1016/j.corsci.2023.111610

    Article  CAS  Google Scholar 

  20. Liu C, Li C, Che Z et al (2023) Influence of cementite coarsening on the corrosion resistance of high strength low alloy steel. npj Mater Degrad 7:43. https://doi.org/10.1038/s41529-023-00358-1

    Article  CAS  Google Scholar 

  21. Liu C, Li Y, Cheng X, Li X (2022) Recent advances on the corrosion resistance of low-density steel: a review. Acta Metall Sin 35:1055–1067. https://doi.org/10.1007/s40195-021-01369-0

    Article  Google Scholar 

  22. Chen T, Wang B, Sun L et al (2024) The coupling mechanism of shrinkage defects and graphite on the corrosion resistance of ductile iron. Corros Sci 227:111798. https://doi.org/10.1016/j.corsci.2023.111798

    Article  CAS  Google Scholar 

  23. Wang H, Yu H, Kondo S et al (2020) Corrosion behaviour of Al-added high Mn austenitic steels in molten lead bismuth eutectic with saturated and low oxygen concentrations at 450 ℃. Corros Sci 175:108864. https://doi.org/10.1016/j.corsci.2020.108864

    Article  CAS  Google Scholar 

  24. Chiter F, Costa D, Maurice V, Marcus P (2023) Corrosion inhibition at emergent grain boundaries studied by DFT for 2-mercaptobenzothiazole on bi-crystalline copper. npj Mater Degrad 7:5. https://doi.org/10.1038/s41529-022-00314-5

    Article  CAS  Google Scholar 

  25. Corkhill CL, Mann C, Eskelsen JR et al (2022) Surface interfacial analysis of simulant high level nuclear waste glass dissolved in synthetic cement solutions. npj Mater Degrad 6:67. https://doi.org/10.1038/s41529-022-00279-5

    Article  CAS  Google Scholar 

  26. Cui Y-W, Chen L-Y, Chu Y-H et al (2023) Metastable pitting corrosion behavior and characteristics of passive film of laser powder bed fusion produced Ti–6Al–4V in NaCl solutions with different concentrations. Corros Sci 215:111017. https://doi.org/10.1016/j.corsci.2023.111017

    Article  CAS  Google Scholar 

  27. Feng H, Li H-B, Dai J et al (2022) Why CoCrFeMnNi HEA could not passivate in chloride solution?–A novel strategy to significantly improve corrosion resistance of CoCrFeMnNi HEA by N-alloying. Corros Sci 204:110396. https://doi.org/10.1016/j.corsci.2022.110396

    Article  CAS  Google Scholar 

  28. Alcántara J, Chico B, Díaz I et al (2015) Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel. Corros Sci 97:74–88. https://doi.org/10.1016/j.corsci.2015.04.015

    Article  CAS  Google Scholar 

  29. Han W, Pan C, Wang Z, Yu G (2014) A study on the initial corrosion behavior of carbon steel exposed to outdoor wet-dry cyclic condition. Corros Sci 88:89–100. https://doi.org/10.1016/j.corsci.2014.07.031

    Article  CAS  Google Scholar 

  30. Liu TL, Zheng KH, Lin YF, Luo ZC (2021) Effect of second-phase particles on the oxidation behaviour of a high-manganese austenitic heat-resistant steel. Corros Sci 182:109284. https://doi.org/10.1016/j.corsci.2021.109284

    Article  CAS  Google Scholar 

  31. Liu Z, Zhang LM, Chen WQ et al (2023) Effect of chloride ion on the corrosion behavior of SiN stainless steel in concentrated hot nitric acid media. Corros Sci 225:111604. https://doi.org/10.1016/j.corsci.2023.111604

    Article  CAS  Google Scholar 

  32. Lu JC, Wang ZB, Hu HX, Zheng YG (2024) Understanding localized corrosion mechanism of 90/10 copper-nickel alloy in flowing NaCl solution induced by partial coverage of corrosion products films. Corros Sci 227:111716. https://doi.org/10.1016/j.corsci.2023.111716

    Article  CAS  Google Scholar 

  33. Nishimura R, Shiraishi D, Maeda Y (2004) Hydrogen permeation and corrosion behavior of high strength steel MCM 430 in cyclic wet–dry SO2 environment. Corros Sci 46:225–243. https://doi.org/10.1016/S0010-938X(03)00141-0

    Article  CAS  Google Scholar 

  34. Yang S, Che Z, Liu C et al (2023) Mechanism of the dual effect of Te addition on the localised corrosion resistance of 15–5PH stainless steel. Corros Sci 212:110970. https://doi.org/10.1016/j.corsci.2023.110970

    Article  CAS  Google Scholar 

  35. Chen T, Sun L, Li Q et al (2023) Comprehensive analysis of corrosion failure of blast furnace gas pipeline in a steel plant. Eng Fail Anal 154:107651. https://doi.org/10.1016/j.engfailanal.2023.107651

    Article  CAS  Google Scholar 

  36. Luo ZC, Cui YX, Liu ZX et al (2024) Oxidation mechanism of high-manganese heat-resistant steels reinforced by in situ second-phase particles. Corros Sci 227:111720. https://doi.org/10.1016/j.corsci.2023.111720

    Article  CAS  Google Scholar 

  37. Zhen-Wu BY, Prentice DP, Ryan JV et al (2020) zeo19: A thermodynamic database for assessing zeolite stability during the corrosion of nuclear waste immobilization glasses. npj Mater Degrad 4:2. https://doi.org/10.1038/s41529-019-0106-1

    Article  CAS  Google Scholar 

  38. Chiter F, Costa D, Maurice V, Marcus P (2021) Corrosion inhibition of locally de-passivated surfaces by DFT study of 2-mercaptobenzothiazole on copper. npj Mater Degrad 5:52. https://doi.org/10.1038/s41529-021-00198-x

    Article  CAS  Google Scholar 

  39. Hubbard CR, Snyder RL (1988) RIR–Measurement and use in quantitative XRD. Powder Diffr 3:74–77. https://doi.org/10.1017/S0885715600013257

    Article  CAS  Google Scholar 

  40. Wu W, Cheng X, Zhao J, Li X (2020) Benefit of the corrosion product film formed on a new weathering steel containing 3% nickel under marine atmosphere in Maldives. Corros Sci 165:108416. https://doi.org/10.1016/j.corsci.2019.108416

    Article  CAS  Google Scholar 

  41. Yue X, Ren Y, Huang L et al (2022) The role of Cl- in the formation of the corrosion products and localised corrosion of 15Cr martensite stainless steel under an CO2-containing extreme oilfield condition. Corros Sci 194:109935. https://doi.org/10.1016/j.corsci.2021.109935

    Article  CAS  Google Scholar 

  42. Akiyama E, Matsukado K, Wang M, Tsuzaki K (2010) Evaluation of hydrogen entry into high strength steel under atmospheric corrosion. Corros Sci 52:2758–2765. https://doi.org/10.1016/j.corsci.2009.11.046

    Article  CAS  Google Scholar 

  43. Liu ZY, Hao WK, Wu W et al (2019) Fundamental investigation of stress corrosion cracking of E690 steel in simulated marine thin electrolyte layer. Corros Sci 148:388–396. https://doi.org/10.1016/j.corsci.2018.12.029

    Article  CAS  Google Scholar 

  44. Han W, Pan C, Wang Z, Yu G (2015) Initial atmospheric corrosion of carbon steel in industrial environment. J Mater Eng Perform 24:864–874. https://doi.org/10.1007/s11665-014-1329-5

    Article  CAS  Google Scholar 

  45. Frankel GS (1997) Pitting corrosion of metals; a summary of the critical factors. In: Proceedings of the international symposium on pits and pores: formation, properties, and significance for advanced luminescent materials, pp 1–26

  46. Kuah KX, Blackwood DJ (2023) Investigating molybdenum’s sulphur scavenging ability for MoS 2 formation in preventing pitting corrosion of stainless steels. npj Mater Degrad 7:80. https://doi.org/10.1038/s41529-023-00401-1

    Article  CAS  Google Scholar 

  47. Majérus O, Lehuédé P, Biron I et al (2020) Glass alteration in atmospheric conditions: crossing perspectives from cultural heritage, glass industry, and nuclear waste management. npj Mater Degrad 4:27. https://doi.org/10.1038/s41529-020-00130-9

    Article  CAS  Google Scholar 

  48. Minola M, Roche V, Rouve L-L et al (2023) Laboratory studies of ship hull’s material degradation scenarios to optimize a cathodic protection modelling software. npj Mater Degrad 7:24. https://doi.org/10.1038/s41529-023-00341-w

    Article  Google Scholar 

  49. O’Brien SP, Christudasjustus J, Esteves L et al (2021) A low-cost, low-density, and corrosion resistant AlFeMnSi compositionally complex alloy. npj Mater Degrad 5:12. https://doi.org/10.1038/s41529-021-00158-5

    Article  CAS  Google Scholar 

  50. Gong K, Wu M, Liu G (2020) Stress corrosion cracking behavior of rusted X100 steel under the combined action of Cl and HSO3 in a wet–dry cycle environment. Corros Sci 165:108382. https://doi.org/10.1016/j.corsci.2019.108382

    Article  CAS  Google Scholar 

  51. Yadav AP, Nishikata A, Tsuru T (2004) Electrochemical impedance study on galvanized steel corrosion under cyclic wet–dry conditions––influence of time of wetness. Corros Sci 46:169–181. https://doi.org/10.1016/S0010-938X(03)00130-6

    Article  CAS  Google Scholar 

  52. Akiyama E, Li S, Shinohara T et al (2011) Hydrogen entry into Fe and high strength steels under simulated atmospheric corrosion. Electrochim Acta 56:1799–1805. https://doi.org/10.1016/j.electacta.2010.09.043

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Natural Science Foundation of China (Nos. 52104319, 52374323 and 51971033), and the Science and Technology on Reactor System Design Technology Laboratory.

Funding

National Natural Science Foundation of China, Nos. 52104319, Yunhua Huang, 52374323, Chao Liu, 51971033, Chao Liu

Author information

Authors and Affiliations

Authors

Contributions

Chao Li: Data curation, Writing—review and editing. Jiahe Shi: Data curation, Writing—review and editing. Yunhua Zhou: Methodology. Xiaokun Cai: Conceptualization, Methodology, Writing—original draft. Tianqi Chen: Methodology. Yashun Feng: Data curation, Investigation, Writing—original draft. Yunhua Huang: Funding acquisition, Writing—review and editing. Xuequn Cheng: Writing—review and editing. Chao Liu: Funding acquisition, Methodology, Supervision, Writing—review and editing. Xiaogang Li: Methodology, Supervision, Writing—review and editing.

Corresponding authors

Correspondence to Yunhua Huang or Chao Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Nima Haghdadi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Shi, J., Zhou, Y. et al. Stress corrosion cracking behavior and mechanism of high manganese steel in inshore SO2-polluted marine environment. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09939-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-09939-0

Navigation