Skip to main content
Log in

Microstructure evolution and shear behavior of Pb–16Sn–7.5Sb–xAg/Cu joints

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The aerospace industry requires a reliable solder with a melting point of about 240 °C that does not produce tin whiskers. The Pb–16Sn–7.5Sb-based solders, with a melting point of about 240 °C, would be the candidate solders. This paper studied the microstructure and shear strength of the Pb–16Sn–7.5Sb–xAg/Cu solder joints. The Cu3Sn formed at the interface of Pb–16Sn–7.5Sb–xAg/Cu after soldering at 260 °C. The thickness of Cu3Sn IMC is proportional to the square root of time until the SbSn phase in the solder is exhausted. Adequate Ag addition in Pb–16Sn–7.5Sb solder increases the activation energy of Cu3Sn, inhibiting the rapid growth of Cu3Sn. Therefore, after soldering for 5 min, the thickness of Cu3Sn layer in Pb–16Sn–7.5Sb/Cu solder joint is 2.2 μm, which is reduced to 1.2 μm in Pb–16Sn–7.5Sb–1Ag/Cu solder joint. The shear strength of the solder joint increases with the thickness of the Cu3Sn layer when the thickness of the Cu3Sn layer is below 1.2 μm, then decreases when the Cu3Sn layer is too thick. The solder joint, with a thin and flat Cu3Sn IMC layer, shows high shear strength. After soldering for 5 min, the shear strength of the Pb–16Sn–7.5Sb–1Ag/Cu solder joint achieves 32 MPa, about 60% higher than the Pb–16Sn–7.5Sb/Cu joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Data availability

Raw data will be made available upon request.

References

  1. Lo JCC, Jia BF, Liu Z, Zhu J, Ricky Lee SW (2008) Reliability study of surface mount printed circuit board assemblies with lead-free solder joints. Solder Surf Mount Technol 20:30–38. https://doi.org/10.1108/09540910810871548

    Article  CAS  Google Scholar 

  2. Brinlee S, Popelar S (2023) A physics-of-failure investigation of flip chip reliability based on lead-free solder fatigue modeling. J Microelectron Electron Packag 20:27–35. https://doi.org/10.4071/imaps.1939648

    Article  Google Scholar 

  3. Jiang N, Zhang L, Liu Z-Q et al (2019) Reliability issues of lead-free solder joints in electronic devices. Sci Technol Adv Mater 20:876–901. https://doi.org/10.1080/14686996.2019.1640072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang S, Feng J, Wang S, Wang K, Yu M, Tian Y (2022) Interfacial reaction between novel high entropy alloy SnPbInBiSb and Cu substrate. Mater Lett 325:132901. https://doi.org/10.1016/j.matlet.2022.132901

    Article  CAS  Google Scholar 

  5. Sabbar EH, Al-Zubaidi HA, Aljumaili AK, Al-Jumaili MH, Al-Jumaili AI, Alsheakh H (2023) Effects of Ag content on microstructure evolution, intermetallic compound (IMC) and mechanical behaviour of SAC solder joints. Microelectron Reliab 147:115103. https://doi.org/10.1016/j.microrel.2023.115103

    Article  CAS  Google Scholar 

  6. Shnawah DA, Sabri MFM, Badruddin IA (2012) A review on thermal cycling and drop impact reliability of SAC solder joint in portable electronic products. Microelectron Reliab 52:90–99. https://doi.org/10.1016/j.microrel.2011.07.093

    Article  CAS  Google Scholar 

  7. Cai C, Xu J, Wang H, Park SB (2021) A comparative study of thermal fatigue life of Eutectic Sn-Bi, Hybrid Sn-Bi/SAC and SAC solder alloy BGAs. Microelectron Reliab 119:114065. https://doi.org/10.1016/j.microrel.2021.114065

    Article  CAS  Google Scholar 

  8. Xu J, Fu Y, Zhou X, Zhang J, Xue S (2022) Reliability of SnPbSb/Cu solder joint in the high-temperature application. Crystals 12:1724. https://doi.org/10.3390/cryst12121724

    Article  CAS  Google Scholar 

  9. Morando C, Fornaro O, Garbellini O, Palacio H (2014) Thermal properties of Sn-based solder alloys. J Mater Sci: Mater Electron 25:3440–3447. https://doi.org/10.1007/s10854-014-2036-6

    Article  CAS  Google Scholar 

  10. Grossmann G, Nicoletti G (2015) Lead free BGAs soldered with SnPb36Ag2 solder. Mater Trans 56:988–991. https://doi.org/10.2320/matertrans.MI201409

    Article  CAS  Google Scholar 

  11. Wang J, Xue S, Lv Z, Wen L, Liu S (2019) Microstructure and performance evolution of SnPbSb solder joint under γ-ray irradiation and thermal cycling. J Mater Sci: Mater Electron 30:4990–4999. https://doi.org/10.1007/s10854-019-00795-2

    Article  CAS  Google Scholar 

  12. Wang J, Xue S, Wang J, Zhang P, Tao Y, Wang Z (2020) Comparative study on the reliability of SnPbSb solder joint under common thermal cycling and extreme thermal shocking. J Mater Sci: Mater Electron 31:5731–5737. https://doi.org/10.1007/s10854-020-03141-z

    Article  CAS  Google Scholar 

  13. Wang J, Xue S, Lv Z, Wang L, Liu H (2019) Present research status of lead-free solder reinforced by nanoparticles. J Mater Rep 33:2133–2145

    Google Scholar 

  14. Tu K-N, Zeng K (2001) Tin–lead (SnPb) solder reaction in flip chip technology. Mater Sci Eng: R 34:1–58

    Article  Google Scholar 

  15. Kamal M, El-Bediwi A, Lashin AR, El-Zarka AH (2011) Copper effects in mechanical properties of rapidly solidified Sn–Pb–Sb Babbitt bearing alloys. Mater Sci Eng A 530:327–332. https://doi.org/10.1016/j.msea.2011.09.092

    Article  CAS  Google Scholar 

  16. Wang W, Dai F, Wei B (2007) Formation mechanism of primary phases and eutectic structures within undercooled Pb–Sb–Sn ternary alloys. Sci China Ser G: Phys Mech Astr 50:472–490. https://doi.org/10.1007/s11433-007-0046-6

    Article  CAS  Google Scholar 

  17. Khatibi G, Betzwar Kotas A, Lederer M (2018) Effect of aging on mechanical properties of high temperature Pb-rich solder joints. Microelectron Reliab 85:1–11. https://doi.org/10.1016/j.microrel.2018.03.009

    Article  CAS  Google Scholar 

  18. Chen S, Gan G, Xu Q et al (2021) Effect of rapid thermal shock cycle on the thermomechanical reliability of 20Sn–80Pb solder bumps. J Phys Conf Ser 2108:012100. https://doi.org/10.1088/1742-6596/2108/1/012100

    Article  Google Scholar 

  19. El-Daly AA, Fawzy A, Mohamad AZ, El-Taher AM (2011) Microstructural evolution and tensile properties of Sn–5Sb solder alloy containing small amount of Ag and Cu. J Alloys Compd 509:4574–4582. https://doi.org/10.1016/j.jallcom.2011.01.109

    Article  CAS  Google Scholar 

  20. El-Daly AA, Hammad AE, Fawzy A, Nasrallh DA (2013) Microstructure, mechanical properties, and deformation behavior of Sn–1.0Ag–0.5Cu solder after Ni and Sb additions. Mater Des 43:40–49. https://doi.org/10.1016/j.matdes.2012.06.058

    Article  CAS  Google Scholar 

  21. Giuranno D, Delsante S, Borzone G, Novakovic R (2016) Effects of Sb addition on the properties of Sn-Ag-Cu/(Cu, Ni) solder systems. J Alloys Compd 689:918–930. https://doi.org/10.1016/j.jallcom.2016.08.035

    Article  CAS  Google Scholar 

  22. Sungkhaphaitoon P, Plookphol T (2017) The effects of antimony addition on the microstructural, mechanical, and thermal properties of Sn–3.0Ag–0.5Cu solder alloy. Metall Mater Trans A 49:652–660. https://doi.org/10.1007/s11661-017-4439-5

    Article  CAS  Google Scholar 

  23. Chen BL, Li GY (2004) Influence of Sb on IMC growth in Sn–Ag–Cu–Sb Pb-free solder joints in reflow process. Thin Solid Films 462–463:395–401. https://doi.org/10.1016/j.tsf.2004.05.063

    Article  CAS  Google Scholar 

  24. Kim KS, Yu CH, Kim NH, Kim NK, Chang HJ, Chang EG (2003) Isothermal aging characteristics of Sn–Pb micro solder bumps. Microelectron Reliab 43:757–763. https://doi.org/10.1016/s0026-2714(03)00060-x

    Article  CAS  Google Scholar 

  25. Hailong B, Zan L, Junyu C et al (2020) Influence of Ag content on the formation and growth of intermetallic compounds in Sn–Ag–Cu solder. J Mater Sci: Mater Electron 31:10105–10112. https://doi.org/10.1007/s10854-020-03556-8

    Article  CAS  Google Scholar 

  26. Zeng G, McDonald S, Nogita K (2012) Development of high-temperature solders: review. Microelectron Reliab 52:1306–1322. https://doi.org/10.1016/j.microrel.2012.02.018

    Article  CAS  Google Scholar 

  27. Tsai MH, Lin YW, Chuang HY, Kao CR (2011) Effect of Sn concentration on massive spalling in high-Pb soldering reaction with Cu substrate. J Mater Res 24:3407–3411. https://doi.org/10.1557/jmr.2009.0398

    Article  Google Scholar 

  28. Cui Y, Xian JW, Zois A, Marquardt K, Yasuda H, Gourlay CM (2023) Nucleation and growth of Ag3Sn in Sn–Ag and Sn–Ag–Cu solder alloys. Acta Mater 249:118831. https://doi.org/10.1016/j.actamat.2023.118831

    Article  CAS  Google Scholar 

  29. Guo B, Kunwar A, Zhao N, Chen J, Wang Y, Ma H (2018) Effect of Ag3Sn nanoparticles and temperature on Cu6Sn5 IMC growth in Sn-xAg/Cu solder joints. Mater Res Bull 99:239–248. https://doi.org/10.1016/j.materresbull.2017.11.022

    Article  CAS  Google Scholar 

  30. Shao H-k, A-p Wu, Y-d Bao Y, Zhao G-S (2017) Mechanism of Ag3Sn grain growth in Ag/Sn transient liquid phase soldering. Trans Nonferrous Metals Soc China 27:722–732. https://doi.org/10.1016/s1003-6326(17)60080-3

    Article  CAS  Google Scholar 

  31. Wang M, Liu H, Peng J (2022) Enhancing the shear strength of the Au–Ge solder joint via forming a ductile face-centered cubic solid solution layer at the interface. J Mater Res Technol 19:605–616. https://doi.org/10.1016/j.jmrt.2022.05.067

    Article  CAS  Google Scholar 

  32. Wang M, Liu H, Wang R, Peng J (2020) Thermally stable Ni/Au–Sn/Ni joint fabricated via transient liquid-phase bonding. Mater Sci Eng A 773:138738. https://doi.org/10.1016/j.msea.2019.138738

    Article  CAS  Google Scholar 

  33. Wang K, Wang F, Huang Y, Qi K (2019) Comprehensive properties of a novel quaternary Sn–Bi–Sb–Ag solder: wettability, interfacial structure and mechanical properties. Metals 9:791. https://doi.org/10.3390/met9070791

    Article  CAS  Google Scholar 

  34. Lee H-T, Hu S-Y, Hong T-F, Chen Y-F (2008) The shear strength and fracture behavior of Sn–Ag–xSb solder joints with Au/Ni-P/Cu UBM. J Electron Mater 37:867–873. https://doi.org/10.1007/s11664-008-0396-5

    Article  CAS  Google Scholar 

  35. Wang J, Su H, Mu D, Kong X, Jin Y, Shi X (2021) Growth behavior of IMCs in Sn–1.0Ag–0.5Cu–xBi/Ni joints during isothermal aging. J Mater Sci: Mater Electron 32:20777–20792. https://doi.org/10.1007/s10854-021-06591-1

    Article  CAS  Google Scholar 

  36. Wang F, Li D, Tian S, Zhang Z, Wang J, Yan C (2017) Interfacial behaviors of Sn–Pb, Sn–Ag–Cu Pb-free and mixed Sn–Ag–Cu/Sn–Pb solder joints during electromigration. Microelectron Reliab 73:106–115. https://doi.org/10.1016/j.microrel.2017.04.031

    Article  CAS  Google Scholar 

  37. Tang Y, Luo SM, Li ZH, Hou CJ, Li GY (2018) Morphological evolution and growth kinetics of interfacial Cu6Sn5 and Cu3Sn layers in Low-Ag Sn–0.3Ag–0.7Cu–xMn/Cu solder joints during isothermal ageing. J Electron Mater 47:5913–5929. https://doi.org/10.1007/s11664-018-6481-5

    Article  CAS  Google Scholar 

  38. Li Y, Chan YC (2015) Effect of silver (Ag) nanoparticle size on the microstructure and mechanical properties of Sn58Bi–Ag composite solders. J Alloys Compd 645:566–576. https://doi.org/10.1016/j.jallcom.2015.05.023

    Article  CAS  Google Scholar 

  39. Alam ME, Nai SML, Gupta M (2009) Development of high strength Sn–Cu solder using copper particles at nanolength scale. J Alloys Compd 476:199–206. https://doi.org/10.1016/j.jallcom.2008.09.061

    Article  CAS  Google Scholar 

  40. Li J, Sun X, Tian Y, Zhao Y (2013) Studies of the surface reaction mechanisms of Pb-3 wt%Sn-0.5 wt%Ag Anode in CrO3 solutions. J Electrochem Soc 160:E60–E66. https://doi.org/10.1149/2.105306jes

    Article  CAS  Google Scholar 

  41. Mahmudi R, Geranmayeh AR, Noori H, Nayyeri G, Pishbin F (2008) Creep of dilute tin based lead free solder alloys as replacements of Sn–Pb solders. Mater Sci Technol 24:803–808. https://doi.org/10.1179/174328408x307274

    Article  CAS  Google Scholar 

  42. Paleskaa I, Pruszkowska-Drachala R, Kotowskia J et al (2003) Electrochemical behavior of lead alloys in sulfuric and phosphoric acid solutions. J Power Sources 113:308–317. https://doi.org/10.1016/S0378-7753(02)00530-X

    Article  Google Scholar 

  43. Wang Y, Li J, Tian Y (2018) Effect of the Sn–Ag addition on the internal stress change and electrochemical properties of lead-based anodes. Electrochim Acta 275:200–207. https://doi.org/10.1016/j.electacta.2018.04.161

    Article  CAS  Google Scholar 

  44. Kunwar A, An L, Liu J et al (2020) A data-driven framework to predict the morphology of interfacial Cu6Sn5 IMC in SAC/Cu system during laser soldering. J Mater Sci Technol 50:115–127. https://doi.org/10.1016/j.jmst.2019.12.036

    Article  CAS  Google Scholar 

  45. Yoon J-W, Kim S-W, Jung S-B (2005) IMC morphology, interfacial reaction and joint reliability of Pb-free Sn–Ag–Cu solder on electrolytic Ni BGA substrate. J Alloys Compd 392:247–252. https://doi.org/10.1016/j.jallcom.2004.09.045

    Article  CAS  Google Scholar 

  46. Yoon J-W, Kim S-W, Jung S-B (2006) Effects of reflow and cooling conditions on interfacial reaction and IMC morphology of Sn–Cu/Ni solder joint. J Alloys Compd 415:56–61. https://doi.org/10.1016/j.jallcom.2005.03.124

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support from the National Science and Technology Project of China (No. 15452252).

Author information

Authors and Affiliations

Authors

Contributions

Xiaodi Zhang: Conceptualization, Investigation, Methodology, Visualization, Writing-original draft. Richu Wang: Conceptualization, Writing Reviewing and Editing. Chaoqun Peng: Writing Reviewing and Editing. Zhiyong Cai: Funding acquisition, Writing Reviewing and Editing, Supervision. Xiang Peng: Writing Reviewing and Editing, Supervision. Jian Peng: Funding acquisition, Project administration, Writing Reviewing and Editing, Supervision.

Corresponding author

Correspondence to Jian Peng.

Ethics declarations

Conflict of interest

The authors confirm that they have no conficts of interest with respect to the work described in this manuscript.

Ethical approval

Not applicable.

Additional information

Handling Editor: Nima Haghdadi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, R., Peng, C. et al. Microstructure evolution and shear behavior of Pb–16Sn–7.5Sb–xAg/Cu joints. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09938-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-09938-1

Navigation