Skip to main content
Log in

Preparation, characterization and scale inhibition performance of carboxymethyl ficoll

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carboxymethyl Ficoll (CM-Ficoll) has attracted wide attention in various areas such as cell isolation and pharmaceutical slow-release. However, the preparation especially the precise control of carboxymethyl degree of CM-Ficoll remains a challenge. In this work, the preparation of CM-Ficoll was investigated systematically. The substitution degree of hydroxyl groups by carboxymethyl ones in Ficoll was found to be easily controlled by feed ratio, temperature and reaction time. More interestingly, it is found that the CM-Ficoll has significant scale inhibition performance for against calcium carbonate (CaCO3) during water treatment. The scale inhibition performance can be modulated by changing the substitution degree of CM-Ficoll. The possible inhibition mechanism of CM-Ficoll against CaCO3 is the combination of lattice distortion, chelation and dispersion. This work demonstrated that CM-Ficoll should be a promising eco-friendly and cost-effective scale inhibitors for water treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

Data presented in this study are available on request from the corresponding author.

References

  1. Ranganathan VT, Bazmi S, Wallin S et al (2022) Is Ficoll a colloid or polymer? A multitechnique study of a prototypical excluded-volume macromolecular crowder. Macromolecules 55:9103–9112. https://doi.org/10.1021/acs.macromol.2c00677

    Article  CAS  Google Scholar 

  2. Lu YC, Anedda R, Lai LL (2023) Shape-persistent dendrimers. Molecules 28:5546. https://doi.org/10.3390/molecules28145546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nasreen K, Parray ZA, Ahamad S et al (2020) Interactions under crowding milieu: chemical-induced denaturation of myoglobin is determined by the extent of heme dissociation on interaction with crowders. Biomolecules 10:490. https://doi.org/10.3390/biom10030490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Christopoulou NM, Kalogianni DP, Christopoulos TK (2022) Macromolecular crowding agents enhance the sensitivity of lateral flow immunoassays. Biosens Bioelectron 218:114737. https://doi.org/10.1016/j.bios.2022.114737

    Article  CAS  PubMed  Google Scholar 

  5. Guo XH, Kirton GF, Dubin PL (2006) Carboxylated Ficolls: preparation, characterization, and electrophoretic behavior of model charged nanospheres. J Phys Chem B 110:20815–20822. https://doi.org/10.1021/jp062658q

    Article  CAS  PubMed  Google Scholar 

  6. Cadu A, Sekine K, Mormul J et al (2018) Homogeneous catalysed hydrogenation of HMF. Green Chem 20:3386–3393. https://doi.org/10.1039/c8gc01025k

    Article  CAS  Google Scholar 

  7. Ernst JB, Muratsugu S, Wang F et al (2016) Tunable heterogeneous catalysis: N-heterocyclic carbenes as ligands for supported heterogeneous Ru/K-Al2O3 catalysts to tune reactivity and selectivity. J Am Chem Soc 138:10718–10721. https://doi.org/10.1021/jacs.6b03821

    Article  CAS  PubMed  Google Scholar 

  8. Xu JT, Shi YC (2019) Position of acetyl groups on anhydroglucose unit in acetylated starches with intermediate degrees of substitution. Carbohydr Polym 220:118–125. https://doi.org/10.1016/j.carbpol.2019.05.059

    Article  CAS  PubMed  Google Scholar 

  9. Meng Y, Lyu FZ, Xu XJ et al (2020) Recent advances in chain conformation and bioactivities of triple-helix polysaccharides. Biomacromol 21:1653–1677. https://doi.org/10.1021/acs.biomac.9b01644

    Article  CAS  Google Scholar 

  10. Musarurwa H, Tavengwa NT (2020) Application of carboxymethyl polysaccharides as bio-sorbents for the sequestration of heavy metals in aquatic environments. Carbohydr Polym 237:116142. https://doi.org/10.1016/j.carbpol.2020.116142

    Article  CAS  PubMed  Google Scholar 

  11. Axelsson J, Sverrisson K, Rippe A et al (2011) Reduced diffusion of charge-modified, conformationally intact anionic Ficoll relative to neutral Ficoll across the rat glomerular filtration barrier in vivo. Am J Physiol-Renal Physiol 301:F708–F712. https://doi.org/10.1152/ajprenal.00183.2011

    Article  CAS  PubMed  Google Scholar 

  12. Cozzolino S, Graziano G (2021) The magnitude of macromolecular crowding caused by dextran and Ficoll for the conformational stability of globular proteins. J Mol Liq 322:114969. https://doi.org/10.1016/j.molliq.2020.114969

    Article  CAS  Google Scholar 

  13. Kooij B, Dong ZW, Fadaei-Tirani F et al (2023) Synthesis and reactivity of an anionic diazoolefin. Angew Chem-Int Ed 62:e202308625. https://doi.org/10.1002/anie.202308625

    Article  CAS  Google Scholar 

  14. Shen Y, Zhou JY, Wu B et al (2023) Multi-carboxyl based zwitterionic nanofiltration membrane with ion selectivity and anti-scaling performance. J Membr Sci 675:121571. https://doi.org/10.1016/j.memsci.2023.121571

    Article  CAS  Google Scholar 

  15. Yu W, Wang YW, Li AM et al (2018) Evaluation of the structural morphology of starch-graf-poly(acrylic acid) on its scale-inhibition efficiency. Water Res 141:86–95. https://doi.org/10.1016/j.watres.2018.04.021

    Article  CAS  PubMed  Google Scholar 

  16. Mohamed DF, Hamdi SS, Alzanam A et al (2022) Carbon-based nanocoating for extended lifetime of conventional scale inhibitor squeeze treatment in sandstone reservoirs. J Petrol Sci Eng 211:110138. https://doi.org/10.1016/j.petrol.2022.110138

    Article  CAS  Google Scholar 

  17. Kioka A, Nakagawa M (2021) Theoretical and experimental perspectives in utilizing nanobubbles as inhibitors of corrosion and scale in geothermal power plant. Renew Sustain Energy Rev 149:111373. https://doi.org/10.1016/j.rser.2021.111373

    Article  CAS  Google Scholar 

  18. Mazumder MJA (2020) A review of green scale inhibitors: process, types mechanism and properties. Coatings 10:928. https://doi.org/10.3390/coatings10100928

    Article  CAS  Google Scholar 

  19. Mahmoodi L, Malayeri MR, Tabrizi FF (2022) Abatement of scale precipitation in oilfields using green scale inhibitors. J Petrol Sci Eng 208:109237. https://doi.org/10.1016/j.petrol.2021.109237

    Article  CAS  Google Scholar 

  20. Chen T, Liu HT, Liu J et al (2021) Carboxymethylation of polysaccharide isolated from alkaline peroxide mechanical pulping (APMP) waste liquor and its bioactivity. Int J Biol Macromol 181:211–220. https://doi.org/10.1016/j.ijbiomac.2021.03.125

    Article  CAS  PubMed  Google Scholar 

  21. Sanni OS, Bukuaghangin O, Charpentier TVJ et al (2019) Evaluation of laboratory techniques for assessing scale inhibition efficiency. J Petrol Sci Eng 182:106347. https://doi.org/10.1016/j.petrol.2019.106347

    Article  CAS  Google Scholar 

  22. Wang T, Feng B, Guo YT et al (2020) The flotation separation behavior of apatite from calcite using carboxymethyl chitosan as depressant. Miner Eng 159:106635. https://doi.org/10.1016/j.mineng.2020.106635

    Article  CAS  Google Scholar 

  23. Zhang SY, Yang S, Wang CG et al (2022) Characterization of carboxymethyl cellulose made from bamboo harvesting residues. J Renew Mater. 10:3229–3241. https://doi.org/10.32604/jrm.2022.020489

    Article  CAS  Google Scholar 

  24. Titkov AI, Logutenko OA, Gerasimov EY et al (2019) Synthesis of silver nanoparticles stabilized by carboxylated methoxypolyethylene glycols: the role of carboxyl terminal groups in the particle size and morphology. J Incl Phenom Macrocycl Chem 94:287–295. https://doi.org/10.1007/s10847-019-00921-x

    Article  CAS  Google Scholar 

  25. Li J, Du XT, Zheng N et al (2016) Contribution of carboxyl modified chiral mesoporous silica nanoparticles in delivering doxorubicin hydrochloride in vitro: pH-response controlled release, enhanced drug cellular uptake and cytotoxicity. Colloids Surf B-Biointerfaces 141:374–381. https://doi.org/10.1016/j.colsurfb.2016.02.009

    Article  CAS  PubMed  Google Scholar 

  26. Vega-Chacón J, Piazza RD, Marques RFC et al (2019) The influence of pH, hydrolysis and degree of substitution on the temperature-sensitive properties of polyaspartamides. Polym Int 68:88–93. https://doi.org/10.1002/pi.5699

    Article  CAS  Google Scholar 

  27. Suzuki S, Togo A, Kimura S et al (2022) Curdlan acetate fibres with low degrees of substitution fabricated via a continuous process of chemical modification and wet spinning using an ionic liquid. Green Chem 24:2567–2575. https://doi.org/10.1039/d1gc04336f

    Article  CAS  Google Scholar 

  28. Homchaudhuri L, Sarma N, Swaminathan R (2006) Effect of crowding by dextrans and Ficolls on the rate of alkaline phosphatase-catalyzed hydrolysis: a size-dependent investigation. Biopolymers 83:477–486. https://doi.org/10.1002/bip.20578

    Article  CAS  PubMed  Google Scholar 

  29. Cuenca P, Ferrero S, Albani O (2020) Preparation and characterization of cassava starch acetate with high substitution degree. Food Hydrocoll 100:105430. https://doi.org/10.1016/j.foodhyd.2019.105430

    Article  CAS  Google Scholar 

  30. Liu SP, Wang CJ, Liu SY et al (2022) pH-responsive smart composite coating with active anticorrosion and efficient scale inhibition properties. Prog Org Coat 170:106973. https://doi.org/10.1016/j.porgcoat.2022.106973

    Article  CAS  Google Scholar 

  31. Zhou YX, Cui YX, Wang X et al (2021) Melamine-formaldehyde microcapsules encapsulating HEDP for sustained scale inhibition. Colloid Surf Physicochem Eng Asp 628:127361. https://doi.org/10.1016/j.colsurfa.2021.127361

    Article  CAS  Google Scholar 

  32. Ma WT, Hu ZJ, Zhang Y et al (2024) Preparation of carboxy sulfonic acid-containing copolymer scale inhibitors and their scale inhibition effect on CaCO3. J Appl Polym Sci 141:54125. https://doi.org/10.1002/app.54921

    Article  CAS  Google Scholar 

  33. Zhang ZJ, Lu ML, Liu J et al (2020) Fluorescent-tagged hyper-branched polyester for inhibition of CaSO4 scale and the scale inhibition mechanism. Mater Today Commun 25:101359. https://doi.org/10.1016/j.mtcomm.2020.101359

    Article  CAS  Google Scholar 

  34. Chen Y, Chen XS, Liang YN (2020) Synthesis of polyaspartic acid/graphene oxide grafted copolymer and evaluation of scale inhibition and dispersion performance. Diam Relat Mater 108:107949. https://doi.org/10.1016/j.diamond.2020.107949

    Article  CAS  Google Scholar 

  35. di Celso GM, Prisciandaro M, Karatza D et al (2023) Investigating the effect of leucine on calcium carbonate nucleation mechanisms in the view of a circular economy. Acs Sustain Chem Eng 11:12027–12035. https://doi.org/10.1021/acssuschemeng.3c02309

    Article  CAS  Google Scholar 

  36. Zhang H, Xu ZM, Zhao Y et al (2024) Inhibition of calcium carbonate nucleation and crystallization by carboxymethyl dextran: experiments and molecular dynamics simulations. Desalination 573:117205. https://doi.org/10.1016/j.desal.2023.117205

    Article  CAS  Google Scholar 

  37. Zhang H, Xu ZM, Zhao Y et al (2023) Combined quantum mechanics and molecular dynamics study on the calcite scale inhibition mechanism of carboxymethyl dextran. Desalination 553:116503. https://doi.org/10.1016/j.desal.2023.116503

    Article  CAS  Google Scholar 

  38. Cai YH, Zhao JL, Guo XY et al (2022) Synthesis of polyaspartic acid-capped 2-aminoethylamino acid as a green water treatment agent and study of its inhibition performance and mechanism for calcium scales. RSC Adv 12:24596–24606. https://doi.org/10.1039/d2ra04075a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. He ZB, Zhang L, Wang LH et al (2023) Anti-Scale performance and mechanism of valonia tannin extract for calcium carbonate in circulating cooling water system. Sustainability 15:8811. https://doi.org/10.3390/su15118811

    Article  CAS  Google Scholar 

  40. Androsch R, Di Lorenzo ML, Schick C (2016) Crystal nucleation in random L/D-lactide copolymers. European Polym J 75:474–485. https://doi.org/10.1016/j.eurpolymj.2016.01.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Key Research and Development Program China (2023YFD1700303).

Funding

National Key Research and Development Program China, 2023YFD1700303, Xuhong Guo

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enguang Ma, Junyou Wang or Xuhong Guo.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Ma, E., Liu, X. et al. Preparation, characterization and scale inhibition performance of carboxymethyl ficoll. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09934-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-09934-5

Navigation