Skip to main content
Log in

Polyethylene terephthalate composite and foam with superior mechanical properties from the synergistic simultaneous in situ fibrillation of liquid crystal polymer and polytetrafluoroethylene

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Liquid crystal polymers (LCP) and polytetrafluoroethylene (PTFE) were in situ fibrillated to produce polyethylene terephthalate (PET)/LCP/PTFE composites using a simple and scalable extrusion drawing techniques. The PET/LCP/PTFE composites included high-aspect-ratio PTFE fibrils and rod-like LCP fibrils. The simultaneous in situ fibrillation of LCP and PTFE exerted synergistic effects on crystalline behaviour and viscosity of PET, especially for mechanical properties of PET and its foam. The tensile strength of PET/LCP/PTFE composites and impact strength representing improvements of 34% and 62% over those of PET. The improved mechanical properties can be attributed to the simultaneous abundance of orienting rod-like rigid LCP fibrils and tangling flexible PTFE fibrils in the PET matrix, which contributed to stress transfer from matrix to fibrils. A simultaneously in situ fibrillated PET/LCP/PTFE composite foam was fabricated using a batch foaming system with supercritical CO2 as blowing agent. The cell diameter of this foam decreased by 23% over that of standard PET foam, while its cell density increased twofold. The smaller cell diameter of PET/LCP/PTFE foam and superior mechanical properties of PET matrix collectively led to the good mechanical properties of PET/LCP/PTFE foam. Specifically, the compressive strength of the PET/LCP/PTFE foam represents a 35% increase over that of PET foam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

Data availability

All data, models, and code generated or used during the study appear in the submitted article.

References

  1. Yao S, Dongdong Hu, Xi Z, Liu T, Zhimei Xu, Zhao L (2020) Effect of crystallization on tensile mechanical properties of PET foam: Experiment and model prediction. Polym Test 90:1–10

    Article  Google Scholar 

  2. Pietro Mazzuca JP, Firmo JR, Correia EC (2011) Mechanical behaviour in shear and compression at elevated temperature of polyethylene terephthalate (PET) foam. J Build Eng 42:1–11

    Google Scholar 

  3. Arora KA, Lesser AJ, McCarthy TJ (1998) Compressive behavior of microcellular polystyrene foams processed in supercritical carbon dioxide. Polym Eng Sci 38:2055–2062

    Article  CAS  Google Scholar 

  4. Wang G, Wan G, Chai J, Li Bo, Zhao G, Yue Mu, Park CB (2019) Structure-tunable thermoplastic polyurethane foams fabricated by supercritical carbon dioxide foaming and their compressive mechanical properties. J Supercrit Fluids 149:127–137

    Article  CAS  Google Scholar 

  5. Friedrich K, Evstatiev M, Fakirov S, Evstatiev O, Ishii M, Harrass M (2005) Microfibrillar reinforced composites from PET/PP blends: processing, morphology and mechanical properties. Compos Sci Technol 65:107–116

    Article  CAS  Google Scholar 

  6. Meng H, Ni L, Zhou C, Qiu C, Luo Y, Zou H, Zhou S, Liang M (2023) Fabrication of rigid polyimide foams with good mechanical and thermal properties. Polymer 283:1–10

    Article  Google Scholar 

  7. Guo HW, Wang XF, Gong YX, Liu XN, Gao DN (2010) Improved mechanical property of foam glass composites toughened by glass fiber. Mater Lett 64:2725–2727

    Article  CAS  Google Scholar 

  8. Członka S, Strakowska A, Strzelec K, Kairyte A, Kremensas A (2020) Bio-based polyurethane composite foams with improved mechanical. Therm Antibact Propert Mater 13:1–20

    Google Scholar 

  9. Zhongbin Xu, Tang X, Aijuan Gu, Fang Z (2007) el Preparation and mechanical properties of rigid polyurethane foam/organoclay nanocomposites. J Appl Polym Sci 106:439–447

    Article  Google Scholar 

  10. Monticciolo A, Cassagnau P, Michel A (1998) Fibrillar morphology development of PE/PBT blends: rheology and solvent permeability. Polym Eng Sci 38:1882–1889

    Article  CAS  Google Scholar 

  11. Shields RJ, Bhattacharyya D, Fakirov S (2008) Fibrillar polymer-polymer composites: morphology, properties and applications. J Mater Sci 43:6758–6770. https://doi.org/10.1007/s10853-008-2693-z

    Article  CAS  Google Scholar 

  12. Anstey A, Chang E, Kim ES, Rizvi A, Kakroodi AR, Park CB, Lee PC (2021) Nanofibrillated polymer systems: design, application, and current state of the art. Progress Polym Sci 113:1–33

    Article  Google Scholar 

  13. Tjong SC (2003) Structure, morphology, mechanical and thermal characteristics of the in situ composites based on liquid crystalline polymers and thermoplastics. Mater Sci Eng R Rep 41:1–60

    Article  Google Scholar 

  14. Kwabena A (2009) Narh, liquid crystalline polymer blends as a route to self-reinforcing nanocomposites. J Reinf Plast Compos 28:1957–1973

    Article  Google Scholar 

  15. Chin HungChih, Chiou KuoChan, Chang FencChih (1996) Reactive compatibilization of the poly( ethylene terephthalate)/liquid crystalline polymer blends by solid epoxy resin as a coupling agent. J Appl Polym Sci 60:2503–2516

    Article  CAS  Google Scholar 

  16. Branciforti MC, Silva LB, Bretas RES (2006) Molecular orientation of extruded PET/LCP blend films. Part I. Polarized infrared spectroscopy. J Appl Polym Sci 102:2241–2248

    Article  CAS  Google Scholar 

  17. Hong SM, Hwang SS, Seo Y, Chung IJ, Kim KU (2004) Reactive extrusion of in-situ composite based on PET and LCP blends. Polym Eng Sci 37:646–652

    Article  Google Scholar 

  18. Branciforti MC, Silva LB, Machado R, Bretas RES (2007) Molecular orientation of extruded PET/LCP blend films. II. X-ray pole figures. J Appl Polym Sci 106:2955–2962

    Article  CAS  Google Scholar 

  19. Głowińska EP, Paulina Datta J (2020) Rheology of liquid crystalline polymers. Rheol. Polym. Blends Nanocompos. 1:205–224

    Article  Google Scholar 

  20. Hashmi SAR, Kitano T (2007) Shear rate dependence of viscosity and first normal stress difference of LCP/PET blends at solid and molten states of LCP. J Appl Polym Sci 104:2212–2218

    Article  CAS  Google Scholar 

  21. Mahmud MB, Anstey A, Shaayegan V, Lee PC, Park CB (2020) Enhancing the mechanical performance of PA6 based composites by altering their crystallization and rheological behavior via in-situ generated PPS nanofibrils. Compos Part B: Eng 195:1–11

    Article  Google Scholar 

  22. Zhao J, Wang G, Zhang L, Li Bo, Wang C, Zhao G, Park CB (2019) Lightweight and strong fibrillary PTFE reinforced polypropylene composite foams fabricated by foam injection molding. Eur Polymer J 119:22–31

    Article  CAS  Google Scholar 

  23. Qin S, Jiang H-W, Zhang H-H, Huang Z-X, Qu J-P (2022) Simultaneously achieving super toughness and reinforcement of immiscible high-density polyethylene/poly(ethylene terephthalate) composite via oriented spherical crystal structure. Compos Part A Appl Sci Manuf 163:1

    Article  Google Scholar 

  24. Zhang J, Liu G, An P, Yu K, Huang J, Gu Y, Yao J, Cao R, Liu H, Chen C, Zhang C, Wang M (2023) The effect of cooling rates on crystallization and low-velocity impact behaviour of carbon fibre reinforced poly(aryl ether ketone) composites. Compos. Part B Eng. 254:1

    Article  Google Scholar 

  25. Perkins WG (1999) Polymer toughness and impact resistance. Polym Eng Sci 39:2445–2460

    Article  CAS  Google Scholar 

  26. Zhang A, Chai J, Yang C, Zhao J, Zhao G, Wang G (2021) Fibrosis mechanism, crystallization behavior and mechanical properties of in-situ fibrillary PTFE reinforced PP composites. Mater Des 211:1

    Article  Google Scholar 

  27. Jiang C, Han S, Chen S, Zhou H, Wang X (2021) The role of PTFE in-situ fibrillation on PET microcellular foaming. Polymer 212:1–12

    Article  Google Scholar 

  28. Zhao J, Wang G, Chen Z, Huang Y, Wang C, Zhang A, Park CB (2021) Microcellular injection molded outstanding oleophilic and sound-insulating PP/PTFE nanocomposite foam. Compos Part B: Eng 215:1

    Article  Google Scholar 

  29. Arzhakova OV, Dolgova AA, Rukhlya EG, Volynskii AL (2019) Environmental crazing and properties of mesoporous and nanocomposite materials based on poly(tetrafluoroethylene) films. Polymer 161:151–161

    Article  CAS  Google Scholar 

  30. Jurczuk K, Galeski A (2016) Thermoplastic elastomers reinforced with poly(tetrafluoroethylene) nanofibers. Eur Polymer J 80:58–69

    Article  CAS  Google Scholar 

  31. Rizvi A, Andalib ZKM, Park CB (2017) Fiber-spun polypropylene/polyethylene terephthalate microfibrillar composites with enhanced tensile and rheological properties and foaming ability. Polymer 110:139–148

    Article  CAS  Google Scholar 

  32. Liu H, Wang X, Liu W, Liu B, Zhou H, Wang W (2014) Reactive Modification of Poly(ethylene terephthalate) and its Foaming Behavior. Cell Polym 33:189–212

    Article  CAS  Google Scholar 

  33. Wang W, Kesong Yu, Zhou H, Wang X, Mi J (2017) The Effect of Compatibilization on the Properties and Foaming Behavior of Poly(ethylene terephthalate)/Poly(ethylene-octene) Blends. Cell Polym 36:313–332

    Article  CAS  Google Scholar 

  34. Liu H, Wang X, Zhou H, Liu W, Liu B (2015) The Preparation and Characterization of Branching Poly(ethylene terephthalate) and its Foaming Behavior. Cell Polym 34:63–94

    Article  CAS  Google Scholar 

  35. Forestier E, Combeaud C, Guigo N, Sbirrazzuoli N, Billon N (2020) Understanding of strain-induced crystallization developments scenarios for polyesters: comparison of poly(ethylene furanoate), PEF, and poly(ethylene terephthalate). PET Polym 203:1

    Google Scholar 

  36. Androsch R, Wunderlich B (2005) The link between rigid amorphous fraction and crystal perfection in cold-crystallized poly(ethylene terephthalate). Polymer 46:12556–12566

    Article  CAS  Google Scholar 

  37. Liangbin Li, Huang Rui Lu, Ai NF, Shiming H, Chunmei W, Yuemao Z, Dong W (2000) High pressure crystallized poly(ethylene terephthalate): high crystallinity and large extended-chain crystals. Polymer 41:6943–6947

    Article  Google Scholar 

  38. Jurczuk K, Galeski A, Piorkowska E (2013) All-polymer nanocomposites with nanofibrillar inclusions generated in situ during compounding. Polymer 54:4617–4628

    Article  CAS  Google Scholar 

  39. Ochoa I, Hatzikiriakos SG (2005) Paste extrusion of polytetrafluoroethylene (PTFE): surface tension and viscosity effects. Powder Technol 153:108–118

    Article  CAS  Google Scholar 

  40. Takahashi K, Choi NS (2000) Orientation of the skin layer in molded blends of thermotropic liquid crystalline polymer and polyamide 6. J Mater Sci Lett 19:1435–1438

    Article  Google Scholar 

  41. Kis G (1987) In situ composites: blends of isotropic polymers and thermotropic liquid crystalline polymers. Polym Eng Sci 27:410–423

    Article  Google Scholar 

  42. Kakroodi AR, Kazemi Y, Nofar M, Park CB (2017) Tailoring poly(lactic acid) for packaging applications via the production of fully bio-based in situ microfibrillar composite films. Chem Eng J 308:772–782

    Article  CAS  Google Scholar 

  43. Kenig S (2019) Orientation development during processing of nanocomposite polymers. Process Polym Nanocompos 1:297–312

    Article  Google Scholar 

  44. Zhao C, Mark LH, Kim S, Chang E, Park CB, Lee PC (2021) Recent progress in micro-/nano-fibrillar reinforced polymeric composite foams. Polym Eng Sci 61:926–941

    Article  CAS  Google Scholar 

  45. Qin Y, Brydon DL, Mather RR, Wardman RH (1993) Fibres from polypropylene and liquid crystal polymer (LCP) blends: 1. Effect of LCP concentration. Polymer 34:1196–1201

    Article  CAS  Google Scholar 

  46. Anstey A, Tuccitto AV, Lee PC, Park CB (2022) Generation of tough, stiff polylactide nanocomposites through the in situ nanofibrillation of thermoplastic elastomer. ACS Appl Mater Interfaces 14:14422–14434

    Article  CAS  PubMed  Google Scholar 

  47. Jurczuk K, Galeski A, Morawiec J (2017) Effect of poly(tetrafluoroethylene) nanofibers on foaming behavior of linear and branched polypropylenes. Eur Polym J 88:171–182

    Article  CAS  Google Scholar 

  48. van der Meer DW, Milazzo D, Sanguineti A, Vancso GJ (2005) Oriented crystallization and mechanical properties of polypropylene nucleated on fibrillated polytetrafluoroethylene scaffolds. Polym Eng Sci 45:458–468

    Article  Google Scholar 

  49. Wang S, Ma S, Li Na, Jie S, Luo Y, Gao X (2023) Branched thermotropic liquid crystal polymer with favourable processability and dielectric properties. Eur Polym J 196:1–8

    Article  Google Scholar 

  50. Hatui G, Sahoo S, Das CK, Saxena AK, Basu T, Yue CY (2012) Effect of nanosilica and polyphosphazene elastomer on the in situ fibrillation of liquid crystalline polymer (LCP) and thermo-mechanical properties of polybutylene terephthalate (PBT)/LCP blend system. Mater Des 42:184–191

    Article  CAS  Google Scholar 

  51. Dai J, Liang F, Zhang R, Wenzhong Lu, Fan G (2022) Study on modification of ZnNb2O6/PTFE microwave composites with LCP fiber. Ceram Int 48:2362–2368

    Article  CAS  Google Scholar 

  52. Kim SH, Ahna SH, Hirai T (2003) Crystallization kinetics and nucleation activity of silica nanoparticle-filled poly(ethylene 2,6-naphthalate). Polymer 44:5625–5634

    Article  CAS  Google Scholar 

  53. Mukherjee M, Das T, Rajasekar R, Bose S, Kumar S, Das CK (2009) Improvement of the properties of PC/LCP blends in the presence of carbon nanotubes. Compos A Appl Sci Manuf 40:1291–1298

    Article  Google Scholar 

  54. Fanglin Xu, Xin Y, Li T (2018) Tribological enhancement effect of main-chain thermotropic liquid crystalline polymer. Compos A Appl Sci Manuf 108:69–78

    Article  Google Scholar 

  55. Li W, Zhao G, Wang G, Zhang L, Li X, Zhaorui Xu (2023) Real-microcellular poly(ether-block-amide)/carbon fiber foams with improved mechanical property and surface quality for high-performance electromagnetic interference shielding applications. J Market Res 26:6508–6519

    CAS  Google Scholar 

  56. Zhao J, Wang G, Chai J, Chang E, Wang S, Zhang A, Park CB (2022) Polylactic acid/UV-crosslinked in-situ ethylene-propylene-diene terpolymer nanofibril composites with outstanding mechanical and foaming performance. Chem Eng J 447:1

    Article  Google Scholar 

  57. Zhao J, Zhao Q, Wang L, Wang C, Guo B, Park CB, Wang G (2018) Development of high thermal insulation and compressive strength BPP foams using mold-opening foam injection molding with in-situ fibrillated PTFE fibers. Eur Polym J 98:1–10

    Article  CAS  Google Scholar 

  58. Wang Y, Mi J, Du Z, Chen S, Zhang C, Wang X (2021) Peculiar micro and nano cell morphology of PBT/PTFE nanofibrillated composite foams of supercritical CO2 foaming induced by in-situ formed 3D PTFE nanofiber networks. Polymer 232:1

    Article  CAS  Google Scholar 

  59. Deshpande VD, Jape SP (2017) Morphology, crystallization and melting behaviour of poly(trimethylene terephthalate)/thermotropic liquid crystalline polymer blends. J Therm Anal Calorim 128:1479–1493

    Article  CAS  Google Scholar 

  60. Minkova LI, Paci M, Pracella M, Magagnini P (1992) Crystallization behavior of polyphenylene sulfide in blends with a liquid crystalline polymer. Polym Eng Sci 32:57–64

    Article  CAS  Google Scholar 

  61. Magagninib PL, Minkovaa L (2001) Blends of poly(ethylene 2,6-naphthalate) with liquid-crystalline polymers: crystallization behavior and morphology. Polymer 42:5607–5613

    Article  Google Scholar 

  62. Kalkar AK, Deshpande AA (2001) Kinetics of isothermal and non-isothermal crystallization of poly( butylene terephthalate)/liquid crystalline polymer blends. Polym Eng Sci 41:1597–1615

    Article  CAS  Google Scholar 

  63. Bhattacharya SK, Tendolkar A, Misra A (1987) Blends of a liquid crystalline polyester with polyethylene terephthalate. Mol Cryst Liquid Cryst Incorporat Nonlinear Opt 153:501–513

    Article  CAS  Google Scholar 

  64. Budgell DR, Day M (1991) Crystallization behavior of polyphenylenesulfide. Polym Eng Sci 31:1271–1278

    Article  CAS�� Google Scholar 

  65. Cebe P, Georgiev G, Capel M (2005) Effects of nematic polymer liquid crystal on crystallization and structure of PET/Vectra blends. J Mater Sci 40:1141–1152. https://doi.org/10.1007/s10853-005-6930-4

    Article  CAS  Google Scholar 

  66. Rizvi A, Park CB, Favis BD (2015) Tuning viscoelastic and crystallization properties of polypropylene containing in-situ generated high aspect ratio polyethylene terephthalate fibrils. Polymer 68:83–91

    Article  CAS  Google Scholar 

  67. Kakroodi AR, Kazemi Y, Rodrigue D, Park CB (2018) Facile production of biodegradable PCL/PLA in situ nanofibrillar composites with unprecedented compatibility between the blend components. Chem Eng J 351:976–984

    Article  CAS  Google Scholar 

  68. Shiao MingLiang, Nair SV, Garrett PD, Pollard RE (1994) Deformation mechanism and fibre toughening of nylon 6,6. Polymer 35:306–314

    Article  CAS  Google Scholar 

  69. Wong S-C, Mai Y-W, Leng Y (2004) Fiber reinforcement and fracture resistance of PC/PBT/LCP ternary in situ composite. Polym Eng Sci 38:156–168

    Article  Google Scholar 

  70. Ming-Yie Chen Ming-Yih Ju, Chang F-C (2000) Morphologies and mechanical properties of polyarylate/liquid crystalline polymer blends compatibilized by a multifunctional epoxy resin. Macromol Chem Phys 201:2298–2308

    Article  Google Scholar 

  71. Izzati Zulkifli N, Samat N, Anuar H, Zainuddin N (2015) Mechanical properties and failure modes of recycled polypropylene/microcrystalline cellulose composites. Mater Des 69:114–123

    Article  CAS  Google Scholar 

  72. Rizvi A, Tabatabaei A, Reza Barzegari M, Hassan Mahmood S, Park CB (2013) In situ fibrillation of CO2-philic polymers: sustainable route to polymer foams in a continuous process. Polymer 54:4645–4652

    Article  CAS  Google Scholar 

  73. Likai Hu, Zhang F, Luo L, Wang L, Liu Y, Leng J (2023) Design and preparation of shape memory phenol-formaldehyde foam composites with excellent thermal stability and mechanical properties. Compos A Appl Sci Manuf 174:1–11

    Google Scholar 

  74. Notario B, Pinto J, Rodriguez Perez MA (2016) Nanoporous polymeric materials: a new class of materials with enhanced properties. Progr Mater Sci 78–79:93–139

    Article  Google Scholar 

  75. Wang G, Zhao J, Wang G, Mark LH, Park CB, Zhao G (2017) Low-density and structure-tunable microcellular PMMA foams with improved thermal-insulation and compressive mechanical properties. Eur Polym J 95:382–393

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Can Jiang contributed to data curation, investigation, validation, and writing. Jianguo Mi was involved in supervision. Yiheng He contributed to supervision. Xiangdong Wang was involved in data curation and supervision.

Corresponding authors

Correspondence to Jianguo Mi or Xiangdong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Jaime Grunlan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Mi, J., He, Y. et al. Polyethylene terephthalate composite and foam with superior mechanical properties from the synergistic simultaneous in situ fibrillation of liquid crystal polymer and polytetrafluoroethylene. J Mater Sci 59, 12476–12501 (2024). https://doi.org/10.1007/s10853-024-09928-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09928-3

Navigation