Skip to main content
Log in

Facile synthesis and effect of samarium doping on structural and optical properties of barium strontium orthosilicate nanophosphors with potential implications in optoelectronic and display optimization

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The barium strontium orthosilicate [BaSr(1-x)SiO4:xSm3+] phosphors for various concentrations have been successfully prepared by using combustion synthesis approach. The synthesized samples have been characterized by using various techniques such as X-ray diffraction (XRD), photoluminescence spectroscopy, UV–Vis spectroscopy, high-resolutions tunneling electron microscopy (HRTEM) and scanning electron microscopy (SEM). By comparing the patterns obtained from XRD of the samples with the data from the JCPDS no. 00-154-0392 that was available, orthorhombic phase formation was verified. The images obtained by scanning electron microscopy (SEM) showed the porous nature of the phosphor. The HRTEM analysis confirmed the size of the particle of the nanophosphor. When the material is excited at a wavelength of 404 nm, the photoluminescence spectra of BaSrSiO4:Sm3+ demonstrate the presence of four distinct emission peaks, which may be attributed to the transitions from the 4G5/2 energy level to the 6HJ energy levels (where J takes on the values of 5/2, 7/2, 9/2 and 11/2). The hypothesis proposed by Dexter demonstrates that the phenomenon of concentration quenching between the Sm3+-Sm3+ ions present in the phosphors arises from the dipole–quadrupole interaction between them. Its deep reddish–orange emission is shown by the estimated Commission Internationale de I’Elcairage color coordinates, indicating its applicability in display enhancement and other optoelectronic applications. This study presents a comprehensive analysis of the luminescence characteristics of the synthesized phosphors, providing a full account of these features for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. Sun H, Peng D, Wang X, Tang M, Zhang Q, Yao X (2011) Strong red emission in Pr doped (Bi0.5Na0.5)TiO 3 ferroelectric ceramics. J Appl Phys 110:3–6. https://doi.org/10.1063/1.3606425

    Article  CAS  Google Scholar 

  2. Nasrollahzadeh M, Mohammad Sajadi S, Babaei F, Maham M (2015) Euphorbia helioscopia Linn as a green source for synthesis of silver nanoparticles and their optical and catalytic properties. J Colloid Interface Sci 450:374–380. https://doi.org/10.1016/j.jcis.2015.03.033

    Article  CAS  PubMed  Google Scholar 

  3. Huang CH, Lai YT, Chan TS, Yeh YT, Liu WR (2014) A novel green-emitting SrCaSiAl2O7:Eu2+ phosphor for white LEDs. RSC Adv 4:7811–7817. https://doi.org/10.1039/C3RA46690F

    Article  CAS  Google Scholar 

  4. Li P, Wang Z, Guo Q, Yang Z (2015) Luminescence and energy transfer of 432 nm blue LED radiation-converting phosphor Ca4Y6O(SiO4)6:Eu2+, Mn2+ for warm white LEDs. RSC Adv 5:4448–4453. https://doi.org/10.1039/C4RA08283D

    Article  CAS  Google Scholar 

  5. Cho J, Bang BK, Jeong SJ, Kim CH (2014) Synthesis of red-emitting nanocrystalline phosphor CaAlSiN3:Eu2+ derived from elementary constituents. RSC Adv 4:23218–23222. https://doi.org/10.1039/C4RA02550D

    Article  CAS  Google Scholar 

  6. Wu Q, Li Y, Wang X, Zhao Z, Wang C, Li H, Mao A, Wang Y (2014) Novel optical characteristics of Eu2+ doped and Eu2+, Ce3+ co-doped LiSi2N3 phosphors by gas-pressed sintering. RSC Adv 4:39030–39036. https://doi.org/10.1039/C4RA05502K

    Article  CAS  Google Scholar 

  7. Kumari A, Pandey A, Dey R, Rai VK (2014) Simultaneous influence of Zn2+/Mg2+ on the luminescent behaviour of La2O3:Tm3+–Yb3+ phosphors. RSC Adv 4:21844–21851. https://doi.org/10.1039/C4RA01400F

    Article  CAS  Google Scholar 

  8. Kang SS, Park JK, Choi JY, Nam SH, Kwak MG, Choi SS, Song YS (2004) Synthesis and characterization of Y2O3: Eu phosphor derived by solution-combustion method. Jpn J Appl Phys 43:L1507. https://doi.org/10.1143/JJAP.43.L1507

    Article  CAS  Google Scholar 

  9. Zhaoxian X, Yayong C, Zhihui C, Chunxiao S (2006) Modification of luminescent properties of red sulphide phosphors for white LED lighting. J Rare Earths 24:133–136. https://doi.org/10.1016/S1002-0721(07)60342-1

    Article  Google Scholar 

  10. Pawade VB, Kolte MM, Kakade NR, Dhoble SJ (2020) TL -OSL properties of nanosized BaMg2Al6Si9O30:Ce3+/Dy3+ phosphor. Optik 203:164004. https://doi.org/10.1016/j.ijleo.2019.164004

    Article  CAS  Google Scholar 

  11. Kim JM, Park SJ, Kim KH, Choi HW (2012) The luminescence properties of M2MgSi2O7:Eu2+ (M=Sr, Ba) nano phosphor in ultraviolet light emitting diodes. Ceram Int 38:S571–S575. https://doi.org/10.1016/j.ceramint.2011.05.100

    Article  CAS  Google Scholar 

  12. He H, Fu R, Zhang X, Song X, Zhao X, Pan Z (2009) Photoluminescence spectra tuning of Eu2+ activated orthosilicate phosphors used for white light emitting diodes. J Mater Sci Mater Electron 20:433–438. https://doi.org/10.1007/s10854-008-9747-5

    Article  CAS  Google Scholar 

  13. Qin X, Liu X, Huang W, Bettinelli M, Liu X (2017) Lanthanide-activated phosphors based on 4f–5d optical transitions: theoretical and experimental aspects. Chem Rev 117:4488–4527. https://doi.org/10.1021/acs.chemrev.6b00691

    Article  CAS  PubMed  Google Scholar 

  14. Lin YC, Karlsson M, Bettinelli M (2017) Inorganic phosphor materials for lighting bt - photoluminescent materials and electroluminescent devices. In: Armaroli N, Bolink HJ (eds). Springer, Cham, pp 309–355. https://doi.org/10.1007/s41061-016-0023-5.

  15. Pan W, Ning G, Zhang X, Wang J, Lin Y, Ye J (2008) Enhanced luminescent properties of long-persistent Sr2MgSi2O7:Eu2+, Dy3+ phosphor prepared by the co-precipitation method. J Lumin 128:1975–1979. https://doi.org/10.1016/j.jlumin.2008.06.009

    Article  CAS  Google Scholar 

  16. Huang Z, Chen YJ, Chen L, Xie Y, Xiao LJ, Yang Y (2013) Fluorescence improvement of Ba1.3Ca0.7SiO4:Eu2+, Mn2+ phosphors via Dy3+ addition and their color-tunable properties. Ceram Int 39:2709–2714. https://doi.org/10.1016/j.ceramint.2012.09.038

    Article  CAS  Google Scholar 

  17. Tshabalala MA, Dejene FB, Pitale SS, Swart HC, Ntwaeaborwa OM (2014) Generation of white-light from Dy3+ doped Sr2SiO4 phosphor. Phys B Condens Matter 439:126–129. https://doi.org/10.1016/j.physb.2013.11.022

    Article  CAS  Google Scholar 

  18. Barry TL (1968) Equilibria and Eu2+ luminescence of subsolidus phases bounded by Ba3MgSi2O8, Sr3MgSi2O8 and Ca3MgSi2O8. J Electrochem Soc 115:733. https://doi.org/10.1149/1.2411413

    Article  CAS  Google Scholar 

  19. Barry TL (1968) Fluorescence of Eu2+-Activated phases in binary alkaline earth orthosilicate systems. J Electrochem Soc 115:1181. https://doi.org/10.1149/1.2410935

    Article  CAS  Google Scholar 

  20. Barry TL (1970) Luminescent Properties of Eu2+ and Eu2+ + Mn2+ Activated BaMg2Si2O7. J Electrochem Soc 117:381. https://doi.org/10.1149/1.2407516

    Article  CAS  Google Scholar 

  21. Liu B, Shi C, Yin M, Dong L, Xiao ZG (2005) The trap states in the Sr2MgSi2O7 and (Sr, Ca)MgSi2O7 long afterglow phosphor activated by Eu2+ and Dy3+. J Alloys Compd 387:65–69. https://doi.org/10.1016/j.jallcom.2004.06.061

    Article  CAS  Google Scholar 

  22. Rao RP (1996) Preparation and characterization of fine-grain yttrium-based phosphors by sol-gel process. J Electrochem Soc 143:189–197. https://doi.org/10.1149/1.1836407

    Article  CAS  Google Scholar 

  23. Lu Q, Li J, Wang D (2013) Single-phased silicate-hosted phosphor with 660 nm-featured band emission for biological light-emitting diodes. Curr Appl Phys 13:1506–1511. https://doi.org/10.1016/j.cap.2013.05.013

    Article  Google Scholar 

  24. Pinho P, Jokinen K, Halonen L (2011) Horticultural lighting – present and future challenges. Light Res Technol 44:427–437. https://doi.org/10.1177/1477153511424986

    Article  Google Scholar 

  25. Wang D, Mao Z, Fahlamn BD (2016) Phosphors with a 660-nm-featured emission for LED/LD lighting in horticulture. In: Liu R-S (ed) Phosphors, up conversion nano particles, quantum dots and their applications. Springer, Singapore, pp 83–117. https://doi.org/10.1007/978-981-10-1590-8_3

    Chapter  Google Scholar 

  26. Liu X, Lei B, Liu Y (2016) The application of phosphor in agricultural field. In: Liu R-S (ed) Phosphors, up conversion nano particles, quantum dots and their applications. Springer, Singapore, pp 119–137. https://doi.org/10.1007/978-981-10-1590-8_4

    Chapter  Google Scholar 

  27. Wei Q, Zhou X, Tang Z, Wang X, Wang Y (2019) A novel blue-emitting Eu2+-doped chlorine silicate phosphor with a narrow band for illumination and displays: structure and luminescence properties. CrystEngComm 21:3660–3667. https://doi.org/10.1039/C9CE00294D

    Article  CAS  Google Scholar 

  28. Golja DR, Dejene FB, Kim JY (2022) Single-phase silicate phosphors (Ba1.3Ca0.7−xSiO4:xDy3+) doped with dysprosium for white solid-state lighting. Adv Condens Matter Phys 2022:1–11. https://doi.org/10.1155/2022/4317275

    Article  CAS  Google Scholar 

  29. Zou J, Yang B, Zhu S, Li J, Wang F (2016) Enhancement of thermal stability and reliability of BaxSr2−xSiO4:Eu2+ phosphors by Ba2+ doping. J Mater Sci Mater Electron 27:13199–13208. https://doi.org/10.1007/s10854-016-5466-5

    Article  CAS  Google Scholar 

  30. Zambare Pradip Z, Chaudhari Dilip B, Mahajan OH (2018) Preparation and luminescent properties of Eu3+ doped barium strontium orthosilicate (SrBaSiO4) phosphor. J Pure Appl Ind Phys 8:200–207

    Google Scholar 

  31. Singh V, Lakshminarayana G, Prabhu NS, Kamath SD, Singh N, Ashraf S (2021) Reddish-orange emission from sol-gel derived Sm3+-doped Sr2La8(SiO4)6O2 phosphors. Optik 227:165935. https://doi.org/10.1016/j.ijleo.2020.165935

    Article  CAS  Google Scholar 

  32. Thakur S, Gathania AK (2016) Investigation of optical properties of YVO4–Er3+ nano-phosphors at different Er3+ concentrations and calcination temperatures. J Mater Sci Mater Electron 27:1988–1993. https://doi.org/10.1007/s10854-015-3982-3

    Article  CAS  Google Scholar 

  33. Thakur S, Dhiman N, Sharma A, Gathania AK (2017) Effect of photonic structure on optical properties of YVO4:Eu3+ phosphor. J Electron Mater 46:2085–2089. https://doi.org/10.1007/s11664-016-5133-x

    Article  CAS  Google Scholar 

  34. Lalotra N, Kaith P, Pathania K (2023) Microscopic and luminescence characteristics of Dy3+ doped KSrVO4 nanophosphors as energy efficient photoluminescent material with potential application in white light-emitting diodes. Environ Sci Pollut Res 30:108928–108945. https://doi.org/10.1007/s11356-023-29948-x

    Article  CAS  Google Scholar 

  35. Charak I, Manhas M, Bedyal AK, Vij A, Swart HC, Kumar V (2023) Synthesis, luminescence and photometric investigation of Sr2B2O5:Dy3+ phosphor for UV-based white LEDs. Appl Phys A Mater Sci Process. https://doi.org/10.1007/s00339-023-06488-2

    Article  Google Scholar 

  36. Rajput P, Biswas P, Singh VK, Kamni (2019) Structural and spectral studies of MgZnO:Cr3+ nanophosphors prepared by combustion synthesis. Appl Phys A Mater Sci Process. https://doi.org/10.1007/s00339-019-3069-8

    Article  Google Scholar 

  37. Kumar I, Gathania AK (2022) Photoluminescence and quenching study of the Sm3+-doped LiBaPO4 phosphor. J Mater Sci Mater Electron 33:328–341. https://doi.org/10.1007/s10854-021-07301-7

    Article  CAS  Google Scholar 

  38. Tauc J (1968) Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull 3:37–46. https://doi.org/10.1016/0025-5408(68)90023-8

    Article  CAS  Google Scholar 

  39. Ahmed AS, Shafeeq MM, Singla ML, Tabassum S, Naqvi AH, Azam A (2011) Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles. J Lumin 131:1–6. https://doi.org/10.1016/j.jlumin.2010.07.017

    Article  CAS  Google Scholar 

  40. Lalotra N, Sharma P, Rajput P, Pathania K (2023) Composition-dependent structural, morphological and luminescent characteristics of Sm3+ doped LiZr2(PO4)3 prepared via combustion synthesis route. Bull Mater Sci 46(2):96. https://doi.org/10.1007/s12034-023-02934-2S

    Article  CAS  Google Scholar 

  41. Eraiah B (2006) Optical properties of samarium doped zinc-tellurite glasses. Bull Mater Sci 29:375–378. https://doi.org/10.1007/BF02704138

    Article  CAS  Google Scholar 

  42. Dimitrov V, Sakka S (1996) Linear and nonlinear optical properties of simple oxides II. J Appl Phys 79:1741–1745. https://doi.org/10.1063/1.360963

    Article  CAS  Google Scholar 

  43. Khajuria P, Mahajan R, Prakash R, Choudhary RJ, Phase DM (2021) Spectral and optical properties of Ruddlesden-Popper-type Ba3Zr2O7 phosphors doped with Eu3+ ion. Appl Phys A Mater Sci Process. https://doi.org/10.1007/s00339-021-04956-1

    Article  Google Scholar 

  44. Ullah I, Khan I, Shah SK, Khattak SA, Shoaib M, Kaewkhao J, Ahmad T, Ahmed E, Rooh G, Khan A (2021) Luminescence properties of Sm3+ doped Na2B4O7 glasses for lighting application. J Lumin 230:117700. https://doi.org/10.1016/j.jlumin.2020.117700

    Article  CAS  Google Scholar 

  45. Nair GB, Tamboli S, Dhoble SJ, Swart HC (2020) Structural and luminescence properties of thermally stable cool-white light emitting NaCaPO4:Dy3+ phosphor. Optik 219:165026. https://doi.org/10.1016/j.ijleo.2020.165026

    Article  CAS  Google Scholar 

  46. Carnall WT, Fields PR, Rajnak K (1968) Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+ and Tm3+. J Chem Phys 49:4424–4442. https://doi.org/10.1063/1.1669893

    Article  CAS  Google Scholar 

  47. Kumar V, Bedyal AK, Ntwaeaborwa OM, Swart HC (2015) Orange-red emitting Pr3+ doped NaSrBO3 nanophosphors: luminescence and optical studies. Mater Focus 4:362–365. https://doi.org/10.1166/mat.2015.1265

    Article  CAS  Google Scholar 

  48. Yashodha SR, Dhananjaya N, Manjunath C (2020) Synthesis and photoluminescence properties of Sm3+ doped LaOCl phosphor with reddish orange emission and it’s Judd- Ofelt analysis. Mater Res Express 7:015003. https://doi.org/10.1088/2053-1591/ab57a6

    Article  CAS  Google Scholar 

  49. Thomas S, George R, Qamhieh N, Gopchandran KG, Mahmoud ST, Quatela A (2021) Sm3+-doped strontium barium borate phosphor for white light emission: spectroscopic properties and Judd-Ofelt analysis. Spectrochim Acta Part A Mol Biomol Spectrosc 248:119187. https://doi.org/10.1016/j.saa.2020.119187

    Article  CAS  Google Scholar 

  50. Deepali RB, Kaur VH, Jayasimhadri M (2021) Structural and spectroscopic properties of Sm3+-doped NaBaB9O15 phosphor for optoelectronic device applications. J Mater Sci Mater Electron 32:1650–1658. https://doi.org/10.1007/s10854-020-04934-y

    Article  CAS  Google Scholar 

  51. Priya R, Khurana I, Pandey OP (2020) Synthesis of intense red light-emitting β-Ca2SiO4:Eu3+ phosphors for near UV-excited light-emitting diodes utilizing agro-food waste materials. J Mater Sci Mater Electron 31:1912–1928. https://doi.org/10.1007/s10854-019-02710-1

    Article  CAS  Google Scholar 

  52. McCamy CS (1992) Correlated color temperature as an explicit function of chromaticity coordinates. Color Res Appl 17:142–144. https://doi.org/10.1002/col.5080170211

    Article  Google Scholar 

  53. Li W, Xie RJ, Zhou T, Liu L, Zhu Y (2014) Synthesis of the phase pure Ba3Si6O12N2:Eu2+ green phosphor and its application in high color rendition white LEDs. Dalt Trans 43:6132–6138. https://doi.org/10.1039/C3DT53603C

    Article  CAS  Google Scholar 

  54. Ntarisa AV, Daniel DJ, Balaji D, Raja A, Kim HJ, Quang ND (2021) A novel blue-emitting phosphors (CsBaYB6O12:Ce3+): potential applications in w-LEDs and X-ray phosphors. J Alloys Compd 873:159676. https://doi.org/10.1016/j.jallcom.2021.159676

    Article  CAS  Google Scholar 

  55. Du P, Yu JS (2016) Synthesis and luminescent properties of red-emitting Eu3+-activated Ca0.5Sr0.5MoO4 phosphors. J Mater Sci 51:5427–5435. https://doi.org/10.1007/s10853-016-9846-2

    Article  CAS  Google Scholar 

  56. Saloni KA (2023) Structural and photoluminescence properties of YVO4: Re3+ (Re = Sm, Dy, Er and Eu) phosphors. J Mater Sci Mater Electron 34:70. https://doi.org/10.1007/s10854-022-09493-y

    Article  CAS  Google Scholar 

  57. Ling S, Xiong FB, Yang WB, Lin HF, Zhu WZ (2023) Novel Sm3+/Eu3+ co-doped Sr7Sb2O12 red-emitting phosphor for white LED. Inorg Chem Commun 150:110365. https://doi.org/10.1016/j.inoche.2022.110365

    Article  CAS  Google Scholar 

  58. Du P, Yu JS (2015) Dual-enhancement of photoluminescence and cathodoluminescence in Eu3+-activated SrMoO4 phosphors by Na+ doping. RSC Adv 5:60121–60127. https://doi.org/10.1039/C5RA06053B

    Article  CAS  Google Scholar 

  59. Huang X, Guo H, Li B (2017) Eu3+-activated Na2Gd(PO4)(MoO4): a novel high-brightness red-emitting phosphor with high color purity and quantum efficiency for white light-emitting diodes. J Alloys Compd 720:29–38. https://doi.org/10.1016/j.jallcom.2017.05.251

    Article  CAS  Google Scholar 

  60. Xiong FB, Xu FX, Lin HF, Wang YP, Ma E, Zhu WZ (2020) Synthesis and luminescent properties of novel thermal-stable orangish-red-emitting LnNbO4: Sm3+ (Ln=La, Y) phosphors. Appl Phys A 126:908. https://doi.org/10.1007/s00339-020-04090-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Kamni Pathania expressed heartfelt gratitude to the Central Instrumentation Facility, IIT Jammu, for providing the XRD characterization facility and the Materials Research Centre, MNIT Jaipur, for providing HRTEM facility for this study.

Author information

Authors and Affiliations

Authors

Contributions

Neha Lalotra helped in synthesis, data curation, investigation, data analysis and writing—original draft. Manav Sharma helped in synthesis and data analysis. Kamni Pathania helped in conceptualization, investigation, supervision, final draft proof reading, editing and validation.

Corresponding author

Correspondence to Kamni Pathania.

Ethics declarations

Conflict of interest

The authors claim that none of the findings of this research article was impacted by any identifiable conflicts of interest in their financial or personal relationships.

Additional information

Handling Editor: Andréa de Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalotra, N., Sharma, M. & Pathania, K. Facile synthesis and effect of samarium doping on structural and optical properties of barium strontium orthosilicate nanophosphors with potential implications in optoelectronic and display optimization. J Mater Sci 59, 12630–12647 (2024). https://doi.org/10.1007/s10853-024-09924-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09924-7

Navigation