Skip to main content
Log in

Multi-scale synergistic regulation of hierarchical porous Ni@NiSe cathodes with low voltage gap, high capacity and long-term cycling stability in Li–CO2 battery

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The Li–CO2 battery often suffers from high overpotential and limited capacity due to the challenges associated with the adsorption of Li+ and CO2 and the decomposition of Li2CO3. Herein, hexagonal rich-stepped NiSe crystals are in situ achieved on a three-dimensional (3D) free-standing porous Ni skeleton with double continuous channel architecture (namely p-Ni@NiSe-50) through an in situ selenization process. Structural characterization and theoretical calculation are applied to demonstrate the synergistic effects of marco/microstructural design and electronic band structure regulation. As a result, the adsorption/desorption of Li+ and CO2 and the formation/decomposition of Li2CO3 are effectively promoted, simultaneously, enabling an enhanced capacity and reversibility of p-Ni@NiSe-50 as the cathode of Li–CO2 battery. An ultra-low overpotential of 0.46 V and a remarkably high energy efficiency of 83.8% (20 μA cm−2) are achieved, along with a high full discharge specific capacity of 8844 μAh cm−2. Excellent long-term cycling stability (cycles up to 1000 h at a voltage gap of 1.14 V) of p-Ni@NiSe-50 is also obtained. The results of this work would provide a new insight and strategy to develop high-performance alkali metal-air batteries.

Graphical abstract

Multi-scale synergistic effect of combining the cathode macroscopic structure design and the microscopic band structure design of NiSe was demonstrated to promote the adsorption of Li+ and CO2, as well as the decomposition of Li2CO3, so as to achieve ultra-low voltage gap and high capacity of Li-CO2 batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Cheng J, Bai YQ, Lian YB, Ma Y, Yin Z, Wei L, Sun H, Su YH et al (2022) Homogenizing Li2CO3 nucleation and growth through high-density single-atomic Ru loading toward reversible Li-CO2 reaction. ACS Appl Mater Interf 14:18561–18569. https://doi.org/10.1021/acsami.2c02249

    Article  CAS  Google Scholar 

  2. Zou JS, Liang GM, Zhang FL, Zhang SL, Davey K, Guo ZP (2023) Revisiting the role of discharge products in Li-CO2 batteries. Adv Mater 35:2210671. https://doi.org/10.1002/adma.202210671

    Article  CAS  Google Scholar 

  3. Wang YF, Ji GJ, Song LN, Wang XX, Xu JJ (2023) A highly reversible lithium-carbon dioxide battery based on soluble oxalate. ACS Energy Lett 8:1026–1034. https://doi.org/10.1021/acsenergylett.2c02558

    Article  CAS  Google Scholar 

  4. Chen J, Chen XY, Liu Y, Qiao Y, Guan SY, Li L, Chou SL (2023) Recent progress of transition metal-based catalysts as cathodes in O2/H2O-involved and pure Li-CO2 batteries. Energy Environ Sci 16:792–829. https://doi.org/10.1039/d2ee03015b

    Article  CAS  Google Scholar 

  5. Wang YF, Song LN, Zheng LJ, Wang Y, Wu JY, Xu JJ (2024) Reversible carbon dioxide/lithium oxalate regulation toward advanced aprotic lithium carbon dioxide battery. Angew Chem Int Ed 63:e202400132. https://doi.org/10.1002/anie.202400132

    Article  CAS  Google Scholar 

  6. Li JX, Zhang K, Wang BJ, Peng HS (2022) Light-assisted metal-air batteries: progress, challenges, and perspectives. Angew Chem Int Ed 61:e202213026. https://doi.org/10.1002/anie.202213026

    Article  CAS  Google Scholar 

  7. Navarro-Jaén S, Virginie M, Thuriot-Roukos J, Wojcieszak R, Khodakov AY (2022) Structure-performance correlations in the hybrid oxide-supported copper-zinc SAPO-34 catalysts for direct synthesis of dimethyl ether from CO2. J Mater Sci 57:3268–3279. https://doi.org/10.1007/s10853-022-06890-w

    Article  CAS  Google Scholar 

  8. Liu YQ, Mao R, Chen B, Lu BY, Piao ZH, Song YZ, Zhou GM, Cheng HM (2023) Atomic design of bidirectional electrocatalysts for reversible Li-CO2 batteries. Mater Today 63:120–136. https://doi.org/10.1016/j.mattod.2022.12.008

    Article  CAS  Google Scholar 

  9. Zhai YJ, Tong H, Deng JL, Li GY, Hou Y, Zhang RH, Wang J, Lu YY et al (2021) Super-assembled atomic Ir catalysts on Te substrates with synergistic catalytic capability for Li-CO2 batteries. Energy Storage Mater 43:391–401. https://doi.org/10.1016/j.ensm.2021.09.017

    Article  Google Scholar 

  10. Khurram A, Yin YM, Yan LF, Zhao LL, Gallant BM (2019) Governing role of solvent on discharge activity in lithium-CO2 batteries. J Phys Chem Lett 10:6679–6687. https://doi.org/10.1021/acs.jpclett.9b02615

    Article  CAS  PubMed  Google Scholar 

  11. Zhang K, Li JX, Zhai WJ, Li CF, Zhu ZF, Kang XY, Liao M, Ye L et al (2022) Boosting cycling stability and rate capability of Li-CO2 batteries via synergistic photoelectric effect and plasmonic interaction. Angew Chem Int Ed 61:e202201718. https://doi.org/10.1002/anie.202201718

    Article  CAS  Google Scholar 

  12. Chen B, Zhong XW, Zhou GM, Zhao NQ, Cheng HM (2022) Graphene-supported atomically dispersed metals as bifunctional catalysts for next-generation batteries based on conversion reactions. Adv Mater 34:2105812. https://doi.org/10.1002/adma.202105812

    Article  CAS  Google Scholar 

  13. Chang JN, Li S, Li Q, Wang JH, Guo C, Wang YR, Chen YF, Li SL et al (2024) Redox molecular junction metal-covalent organic frameworks for light-assisted CO2 energy storage. Angew Chem Int Ed 63:e202402458. https://doi.org/10.1002/anie.202402458

    Article  CAS  Google Scholar 

  14. Cheng ZB, Fang YL, Yang YS, Zhang H, Fan ZW, Zhang JD, Xiang SC, Chen BL et al (2023) Hydrogen-bonded organic framework to upgrade cycling stability and rate capability of Li-CO2 batteries. Angew Chem Int Ed 62:e202311480. https://doi.org/10.1002/anie.202311480

    Article  CAS  Google Scholar 

  15. Zhang JX, Qi GC, Cheng JL, Ratajczak P, Wang ZP, Beguin F, Wang B (2023) Boosted reaction kinetics of Li-CO2 batteries by atomic layer-deposited Mo2N on hydrogen substituted graphdiyne. ACS Sustain Chem Eng 11:16185–16193. https://doi.org/10.1021/acssuschemeng.3c04090

    Article  CAS  Google Scholar 

  16. Qi GC, Zhang JX, Cheng JL, Chen L, Su YF, Wang B (2024) Flexible Li-CO2 batteries with boosted reaction kinetics and cyclelife enabled by heterostructured Mo3N2@TiN cathode and interface-protected Li anode. Small 20:2309064. https://doi.org/10.1002/smll.202309064

    Article  CAS  Google Scholar 

  17. Chen B, Wang DS, Tan JY, Liu YQ, Jiao ML, Liu BL, Zhao NQ, Zou XL et al (2022) Designing electrophilic and nucleophilic dual centers in the ReS2 plane toward efficient bifunctional catalysts for Li-CO2 batteries. J Am Chem Soc 144:3106–3116. https://doi.org/10.1021/jacs.1c12096

    Article  CAS  PubMed  Google Scholar 

  18. Lu BY, Chen B, Wang DS, Li C, Gao RH, Liu YQ, Mao R, Yang JL et al (2023) Engineering the interfacial orientation of MoS2/Co9S8 bidirectional catalysts with highly exposed active sites for reversible Li-CO2 batteries. Proc Natl Acad Sci 120:e2216933120. https://doi.org/10.1073/pnas.2216933120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang BW, Jiao Y, Chao DL, Ye C, Wang YX, Davey K, Liu HK, Dou SX et al (2019) Targeted synergy between adjacent Co atoms on graphene oxide as an efficient new electrocatalyst for Li-CO2 batteries. Adv Funct Mater 29:1904206. https://doi.org/10.1002/adfm.201904206

    Article  CAS  Google Scholar 

  20. Yang CM, Wang CT, Zhou LH, Duan W, Song YY, Zhang FC, Zhen YZ, Zhang JJ et al (2021) Refining d-band center in Ni0.85Se by Mo doping: a strategy for boosting hydrogen generation via coupling electrocatalytic oxidation 5-hydroxymethylfurfural. Chem Eng J 422:130125. https://doi.org/10.1016/j.cej.2021.130125

    Article  CAS  Google Scholar 

  21. Liu W, Geng P, Li SQ, Liu WH, Fan DY, Lu HD, Lu ZH, Liu YP (2021) Tuning electronic configuration of WP2 nanosheet arrays via nickel doping for high-efficiency hydrogen evolution reaction. J Energy Chem 55:17–24. https://doi.org/10.1016/j.jechem.2020.06.068

    Article  CAS  Google Scholar 

  22. Wang L, Li ZJ, Wang KX, Dai QZ, Lei CJ, Yang B, Zhang QH, Lei LC et al (2020) Tuning d-band center of tungsten carbide via Mo doping for efficient hydrogen evolution and Zn-H2O cell over a wide pH range. Nano Energy 74:104850. https://doi.org/10.1016/j.nanoen.2020.104850

    Article  CAS  Google Scholar 

  23. Fan L, Shen HM, Ji DX, Xing Y, Tao L, Sun Q, Guo SJ (2022) Biaxially compressive strain in Ni/Ru core/shell nanoplates boosts Li-CO2 batteries. Adv Mater 34:2204134. https://doi.org/10.1002/adma.202204134

    Article  CAS  Google Scholar 

  24. Zhao B, Liu JW, Xu CY, Feng RF, Sui PF, Wang L, Zhang JJ, Luo JL et al (2021) Hollow NiSe nanocrystals heterogenized with carbon nanotubes for efficient electrocatalytic methanol upgrading to boost hydrogen co-production. Adv Funct Mater 31:2008812. https://doi.org/10.1002/adfm.202008812

    Article  CAS  Google Scholar 

  25. Ahmadiparidari A, Warburton RE, Majidi L, Asadi M, Chamaani A, Jokisaari JR, Rastegar S, Hemmat Z et al (2019) A long-cycle-life lithium-CO2 battery with carbon neutrality. Adv Mater 31:1902518. https://doi.org/10.1002/adma.201902518

    Article  CAS  Google Scholar 

  26. Li X, Wang H, Chen ZX, Xu HS, Yu W, Liu CB, Wang XW, Zhang K et al (2019) Covalent-organic-framework-based Li-CO2 batteries. Adv Mater 31:1905879. https://doi.org/10.1002/adma.201905879

    Article  CAS  Google Scholar 

  27. Liang HG, Zhang YL, Chen F, Jing SY, Yin SB, Tsiakaras P (2019) A novel NiFe@NC-functionalized N-doped carbon microtubule network derived from biomass as a highly efficient 3D free-standing cathode for Li-CO2 batteries. Appl Catal B 244:559–567. https://doi.org/10.1016/j.apcatb.2018.11.075

    Article  CAS  Google Scholar 

  28. Liu YF, Shi YT, Gao CT, Shi ZD, Ding HB, Feng YH, He YM, Sha JW et al (2023) Low-temperature potassium batteries enabled by electric and thermal field regulation. Angew Chem Int Ed 62:e202300016. https://doi.org/10.1002/anie.202300016

    Article  CAS  Google Scholar 

  29. Wang FM, Liu MC, Zhang XB, Lv GJ, Sun MS (2018) In situ growth of 3D hierarchical ZnO@NixCo1−x(OH)y core/shell nanowire/nanosheet arrays on Ni foam for high-performance aqueous hybrid supercapacitors. Transactions Tianjin Univ 24:201–211. https://doi.org/10.1007/s12209-018-0129-7

    Article  CAS  Google Scholar 

  30. Mao HR, Shen P, Yang GY, Zhao L, Qiu XM, Wang HY, Jiang QC (2020) 3D highly oriented metal foam: a competitive self-supporting anode for high-performance lithium-ion batteries. J Mater Sci 55:11462–11476. https://doi.org/10.1007/s10853-020-04702-7

    Article  CAS  Google Scholar 

  31. Yuan L, Lu SW, Yang F, Wang YS, Jia YF, Kadhim MS, Yu YM, Zhang Y et al (2019) A facile room-temperature synthesis of three-dimensional coral-like Ag2S nanostructure with enhanced photocatalytic activity. J Mater Sci 54:3174–3186. https://doi.org/10.1007/s10853-018-3051-4

    Article  CAS  Google Scholar 

  32. Liu LM, Qin YY, Wang K, Mao H, Wu H, Yu W, Zhang DY, Zhao HY et al (2022) Rational design of nanostructured metal/C interface in 3D self-supporting cellulose carbon aerogel facilitating high-performance Li-CO2 batteries. Adv Energy Mater 12:2103681. https://doi.org/10.1002/aenm.202103681

    Article  CAS  Google Scholar 

  33. Xiao Y, Du F, Hu CG, Ding Y, Wang ZL, Roy A, Dai LM (2020) High-performance Li-CO2 batteries from free-standing, binder-free, bifunctional three-dimensional carbon catalysts. ACS Energy Lett 5:916–921. https://doi.org/10.1021/acsenergylett.0c00181

    Article  CAS  Google Scholar 

  34. Hu CG, Gong LL, Xiao Y, Yuan YF, Bedford NM, Xia ZH, Ma L, Wu TP et al (2020) High-performance, long-life, rechargeable Li-CO2 batteries based on a 3D holey graphene cathode implanted with single iron atoms. Adv Mater 32:1907436. https://doi.org/10.1002/adma.201907436

    Article  CAS  Google Scholar 

  35. Jian TZ, Ma WQ, Xu CX, Liu H, Wang J (2023) Intermetallic-driven highly reversible electrocatalysis in Li-CO2 battery over nanoporous Ni3Al/Ni heterostructure. eScience 3:100114. https://doi.org/10.1016/j.esci.2023.100114

  36. Han X, Wang T, Owuor PS, Hwang SH, Wang C, Sha JW, Shen LL, Yoon J et al (2018) Ultra-stiff graphene foams as three-dimensional conductive fillers for epoxy resin. ACS Nano 12:11219–11228. https://doi.org/10.1021/acsnano.8b05822

    Article  CAS  PubMed  Google Scholar 

  37. Kresse G (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  38. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  39. Chen L, Zhou JW, Wang YH, Xiong YC, Zhang JX, Qi GC, Cheng JL, Wang B (2023) Flexible, stretchable, water-/fire-proof fiber-shaped Li-CO2 batteries with high energy density. Adv Energy Mater 13:2202933. https://doi.org/10.1002/aenm.202202933

    Article  CAS  Google Scholar 

  40. Li MH, Ma YY, Chen J, Lawrence R, Luo W, Sacchi M, Jiang W, Yang JP (2021) Residual chlorine induced cationic active species on a porous copper electrocatalyst for highly stable electrochemical CO2 reduction to C2+. Angew Chem Int Ed 60:11487–11493. https://doi.org/10.1002/anie.202102606

    Article  CAS  Google Scholar 

  41. Ye FH, Gong LL, Long YD, Talapaneni SN, Zhang LP, Xiao Y, Liu D, Hu CG et al (2021) Topological defect-rich carbon as a metal-free cathode catalyst for high-performance Li-CO2 batteries. Adv Energy Mater 11:2101390. https://doi.org/10.1002/aenm.202101390

    Article  CAS  Google Scholar 

  42. Liu YD, Sakthivel T, Hu F, Tian YH, Wu DS, Ang EH, Liu H, Guo SW et al (2023) Enhancing the d/p-band center proximity with amorphous-crystalline interface coupling for boosted pH-robust water electrolysis. Adv Energy Mater 13:2203797. https://doi.org/10.1002/aenm.202203797

    Article  CAS  Google Scholar 

  43. Wang ML, Yao Y, Tian YH, Yuan YF, Wang LG, Yang FY, Ren JJ, Hu XR et al (2023) Atomically dispersed manganese on carbon substrate for aqueous and aprotic CO2 electrochemical reduction. Adv Mater 35:2210658. https://doi.org/10.1002/adma.202210658

    Article  CAS  Google Scholar 

  44. Chen SJ, Nie L, Shi HS, Hu XC, Wang ZY, Zhang XS, Zhang YY, Hu QL et al (2023) Ultrafast carbonized wood of electrode-scaled aligned-porous structure for high-performance lithium batteries. Transactions Tianjin Univ 29:387–394. https://doi.org/10.1007/s12209-023-00365-y

    Article  CAS  Google Scholar 

  45. Tang C, Cheng NY, Pu ZH, Xing W, Sun XP (2015) NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting. Angew Chem Int Ed 54:9351–9355. https://doi.org/10.1002/anie.201503407

    Article  CAS  Google Scholar 

  46. Li X, Han GQ, Liu YR, Dong B, Hu WH, Shang X, Chai YM, Liu CG (2016) NiSe@NiOOH core-shell hyacinth-like nanostructures on nickel foam synthesized by in situ electrochemical oxidation as an efficient electrocatalyst for the qxygen evolution reaction. ACS Appl Mater Interfaces 8:20057–20066. https://doi.org/10.1021/acsami.6b05597

    Article  CAS  PubMed  Google Scholar 

  47. Zhou HQ, Wang YM, He R, Yu F, Sun JY, Wang F, Lan YC, Ren ZF et al (2016) One-step synthesis of self-supported porous NiSe2/Ni hybrid foam: an efficient 3D electrode for hydrogen evolution reaction. Nano Energy 20:29–36. https://doi.org/10.1016/j.nanoen.2015.12.008

    Article  CAS  Google Scholar 

  48. Wen XJ, Ran ZQ, Zheng RX, Du DY, Zhao C, Li RJ, Xu HY, Zeng T et al (2022) NiSe2@NiO heterostructure with optimized electronic structure as efficient electrocatalyst for lithium-oxygen batteries. J Alloys Compd 901:163703. https://doi.org/10.1016/j.jallcom.2022.163703

    Article  CAS  Google Scholar 

  49. Cao QH, Huang W, Shou JR, Sun XJ, Wang KL, Zhao YJ, Ding R, Lin WW et al (2023) Coupling dual-phased nickel selenides with N-doped carbon enables efficient urea electrocatalytic oxidation. J Colloid Interf Sci 629:33–43. https://doi.org/10.1016/j.jcis.2022.08.095

    Article  CAS  Google Scholar 

  50. Ni S, Qu HN, Xu ZH, Zhu XY, Xing HF, Wang L, Yu JM, Liu HZ et al (2021) Interfacial engineering of the NiSe2/FeSe2 p-p heterojunction for promoting oxygen evolution reaction and electrocatalytic urea oxidation. Appl Catal B Environ 299:120638. https://doi.org/10.1016/j.apcatb.2021.120638

    Article  CAS  Google Scholar 

  51. Wang K, Liu DY, Liu LM, Li XY, Wu H, Sun ZJ, Li MT, Vasenko AS et al (2023) Isolated metalloid tellurium atomic cluster on nitrogen-doped carbon nanosheet for high-capacity rechargeable lithium-CO2 battery. Adv Sci 10:2205959. https://doi.org/10.1002/advs.202205959

    Article  CAS  Google Scholar 

  52. Wang YY, Wang J, Wang JM, Yang M, Zou GD, Li LJ, Tse JS, Fernandez C et al (2023) Towards an ultra-long lifespan Li-CO2: electron structure and charge transfer pathway regulation on hierarchical architecture. Chem Eng J 451:138953. https://doi.org/10.1016/j.cej.2022.138953

    Article  CAS  Google Scholar 

  53. Li Y, Zhang R, Chen B, Wang N, Sha JW, Ma LY, Zhao DD, Liu EZ et al (2022) Induced construction of large-area amorphous Li2O2 film via elemental co-doping and spatial confinement to achieve high-performance Li-O2 batteries. Energy Storage Mater 44:285–295. https://doi.org/10.1016/j.ensm.2021.10.026

    Article  Google Scholar 

  54. Nishioka K, Morimoto K, Kusumoto T, Harada T, Kamiya K, Mukouyama Y, Nakanishi S (2021) Isotopic depth profiling of discharge products identifies reactive interfaces in an aprotic Li-O2 battery with a redox mediator. J Am Chem Soc 143:7394–7401. https://doi.org/10.1021/jacs.1c00868

    Article  CAS  PubMed  Google Scholar 

  55. Zhang YT, Wang L, Zhang XZ, Guo LM, Wang Y, Peng ZQ (2017) High-capacity and high-rate discharging of a coenzyme Q10-catalyzed Li-O2 battery. Adv Mater 30:1705571. https://doi.org/10.1002/adma.201705571

    Article  CAS  Google Scholar 

  56. Samira S, Deshpande S, Roberts CA, Nacy AM, Kubal J, Matesić K, Oesterling O, Greeley J et al (2019) Nonprecious metal catalysts for tuning discharge product distribution at solid-solid interfaces of aprotic Li-O2 batteries. Chem Mater 31:7300–7310. https://doi.org/10.1021/acs.chemmater.9b01817

    Article  CAS  Google Scholar 

  57. Zhou B, Guo LM, Zhang YT, Wang JW, Ma LP, Zhang WH, Fu ZW, Peng ZQ (2017) A High-performance Li-O2 Battery with a strongly solvating hexamethylphosphoramide electrolyte and a LiPON-protected lithium anode. Adv Mater 29:1701568. https://doi.org/10.1002/adma.201701568

    Article  CAS  Google Scholar 

  58. Lu BY, Min ZW, Xiao X, Wang BR, Chen B, Lu GX, Liu YQ, Mao R et al (2024) Recycled tandem catalysts promising ultralow overpotential Li-CO2 batteries. Adv Mater 36:2309264. https://doi.org/10.1002/adma.202309264

    Article  CAS  Google Scholar 

  59. Chen B, Wang DS, Zhang B, Zhong XW, Liu YQ, Sheng JZ, Zhang Q, Zou XL et al (2021) Engineering the active sites of graphene catalyst: from CO2 activation to activate Li-CO2 batteries. ACS Nano 15:9841–9850. https://doi.org/10.1021/acsnano.1c00756

    Article  CAS  PubMed  Google Scholar 

  60. Qiao Y, Yi J, Wu SC, Liu Y, Yang SX, He P, Zhou HS (2017) Li-CO2 electrochemistry: a new strategy for CO2 fixation and energy storage. Joule 1:359–370. https://doi.org/10.1016/j.joule.2017.07.001

    Article  CAS  Google Scholar 

  61. Liu YQ, Zhao SY, Wang DS, Chen B, Zhang ZY, Sheng JZ, Zhong XW, Zou XL et al (2022) Toward an understanding of the reversible Li-CO2 batteries over metal-N4-functionalized graphene electrocatalysts. ACS Nano 16:1523–1532. https://doi.org/10.1021/acsnano.1c10007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51801135) and Ningbo JS Brothers Tool Factory Ltd. (2022GKF-0523). We also thank Ms. Y. Han, Dr. J. Mao, Dr. J. Zhang and Ms. L. Ma from the National Demonstration Center for Materials Science & Engineering Education, Tianjin University for their help and kind advice about the SEM, TEM, and XPS characterization of the samples.

Author information

Authors and Affiliations

Authors

Contributions

Yating Shi involved in investigation, methodology, data curation, and writing—original draft. Haonan Xie involved in methodology and data curation. Liying Ma involved in data curation. Biao Chen involved in methodology. Jianli Kang involved in data curation. Chunsheng Shi involved in data curation. Chunnian He involved in writing—review and editing. Junwei Sha involved in supervision, methodology, data curation, funding acquisition, and writing—review and editing.

Corresponding author

Correspondence to Junwei Sha.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Our experiments do not involve human tissue.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5778 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Xie, H., Ma, L. et al. Multi-scale synergistic regulation of hierarchical porous Ni@NiSe cathodes with low voltage gap, high capacity and long-term cycling stability in Li–CO2 battery. J Mater Sci 59, 12613–12629 (2024). https://doi.org/10.1007/s10853-024-09922-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09922-9

Navigation