Skip to main content
Log in

Insights into V2O5/COK-12 nanostructures for RH sensor and catalytic applications

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This investigation introduces the multifaceted applications of V2O5/COK-12 nanostructures, presenting a novel approach for addressing the growing demand for advanced nanomaterials in environmental monitoring and remediation. The study explores the dual-functional capabilities of these nanostructures in humidity sensing and photocatalysis, leveraging the unique properties of COK-12, a zeolitic framework renowned for its exceptional surface area (825 m2/g) and porosity, as an optimal host for vanadium doping. Synthesized via hydrothermal method, the materials underwent thorough characterization to confirm the formation of COK-12. Humidity sensing evaluations, conducted over the entire relative humidity environment ranging from 11–98%, demonstrates the remarkable performance of V2O5/COK-12 sensor, manifesting a significant resistance drop spanning 4.8 folds of magnitude change, coupled with rapid response (16 s) and recovery (13 s) times. Furthermore, exploiting the redox activity of vanadium within the nanostructures for photocatalytic reactions reveals enhanced efficiency in degrading organic pollutants under UV light irradiation. The nanostructures exhibit superior catalytic performance, achieving up to 85% degradation of RB (Rose Bengal) dye, compared to pristine silica, which displays a modest 47% adsorption efficiency. This study underscores the versatility of V2O5/COK-12 nanostructures, highlighting their potential to address contemporary challenges in humidity sensing and sustainable photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Duan Z, Jiang Y, Tai H (2021) Recent advances in humidity sensors for human body related humidity detection. J Mater Chem C 9(42):14963–14980

    CAS  Google Scholar 

  2. Delipinar T, Shafique A, Gohar MS, Yapici MK (2021) Fabrication and materials integration of flexible humidity sensors for emerging applications. ACS Omega 6(13):8744–8753

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Malik R, Tomer VK, Mishra YK, Lin L (2020) Functional gas sensing nanomaterials: A panoramic view. Appl Phys Rev 7(2):021301

  4. Fauzi F, Rianjanu A, Santoso I, Triyana K (2021) Gas and humidity sensing with quartz crystal microbalance (QCM) coated with graphene-based materials–A mini review. Sens Actuators, A 15(330):112837

    Google Scholar 

  5. Kaushik A, Kumar R, Arya SK, Nair M, Malhotra BD, Bhansali S (2015) Organic–inorganic hybrid nanocomposite-based gas sensors for environmental monitoring. Chem Rev 115(11):4571–4606

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jakhar S, Duhan S, Nain S (2020) Novel one step hydrothermal synthesis of cubic Ia3d large pore 3D mesoporous In2O3/KIT-6 hybrid nanocomposite with humidity sensing applications. J Porous Mater 27(5):1253–1263

    CAS  Google Scholar 

  7. Lu Y, Yang G, Shen Y, Yang H, Xu K (2022) Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nano-Micro Lett 14(1):150

    CAS  Google Scholar 

  8. Zhu Y, Dong Y, Zhao L, Yuan F (2010) Preparation and characterization of Mesopoous VOx/SBA-16 and their application for the direct catalytic hydroxylation of benzene to phenol. J Mol Catal A: Chem 315(2):205–212

    CAS  Google Scholar 

  9. Perera SD, Liyanage AD, Nijem N, Ferraris JP, Chabal YJ, Balkus KJ Jr (2013) Vanadium oxide nanowire–Graphene binder free nanocomposite paper electrodes for supercapacitors: a facile green approach. J Power Sources 15(230):130–137

    Google Scholar 

  10. Li X, Zhuang Z, Qi D, Zhao C (2021) High sensitive and fast response humidity sensor based on polymer composite nanofibers for breath monitoring and non-contact sensing. Sens Actuators, B Chem 1(330):129239

    Google Scholar 

  11. Zhao L, Dong Y, Zhan X, Cheng Y, Zhu Y, Yuan F, Fu H (2012) One-pot hydrothermal synthesis of mesoporous V-SBA-16 with a function of the pH of the initial gel and its improved catalytic performance for benzene hydroxylation. Catal Lett 142:619–626

    CAS  Google Scholar 

  12. Perera SD, Rudolph M, Mariano RG, Nijem N, Ferraris JP, Chabal YJ, Balkus KJ Jr (2013) Manganese oxide nanorod–graphene/vanadium oxide nanowire–graphene binder-free paper electrodes for metal oxide hybrid supercapacitors. Nano Energy 2(5):966–975

    CAS  Google Scholar 

  13. Kianfar E (2019) Recent advances in synthesis, properties, and applications of vanadium oxide nanotube. Microchem J 1(145):966–978

    Google Scholar 

  14. Kondeboina M, Enumula SS, Gurram VR, Yadagiri J, Burri DR, Kamaraju SR (2018) Mesoporous silica supported cobalt catalysts for gas phase hydrogenation of nitrobenzene: role of pore structure on stable catalytic performance. New J Chem 42(19):15714–15725

    CAS  Google Scholar 

  15. Andrews JL, Cho J, Wangoh L, Suwandaratne N, Sheng A, Chauhan S, Nieto K, Mohr A, Kadassery KJ, Popeil MR, Thakur PK (2018) Hole extraction by design in photocatalytic architectures interfacing CdSe quantum dots with topochemically stabilized tin vanadium oxide. J Am Chem Soc 140(49):17163–17174

    CAS  PubMed  Google Scholar 

  16. Jakhar S, Duhan S, Nain S (2022) Facile hydrothermal synthesis of mesoporous WO3/KIT-6 nanocomposite depicting great humidity sensitive properties. Mater Res Innov 26(4):203–213

    CAS  Google Scholar 

  17. Rohilla B, Boora A, Goyat MS, Duhan S (2023) Exploring 2D hexagonal WO 3/COK-12 nanostructures for efficient humidity detection. Mater Adv 4(22):5785–5796

    CAS  Google Scholar 

  18. Henning LM, Simon U, Gurlo A, Smales GJ, Bekheet MF (2019) Grafting and stabilization of ordered mesoporous silica COK-12 with graphene oxide for enhanced removal of methylene blue. RSC Adv 9(62):36271–36284

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wee LH, Meledina M, Turner S, Custers K, Kerkhofs S, Van Tendeloo G, Martens JA (2015) Hematite iron oxide nanorod patterning inside COK-12 mesochannels as an efficient visible light photocatalyst. J Mater Chem A 3(39):19884–19891

    CAS  Google Scholar 

  20. Khan AL, Sree SP, Martens JA, Raza MT, Vankelecom IF (2015) Mixed matrix membranes comprising of matrimid and mesoporous COK-12: Preparation and gas separation properties. J Membr Sci 1(495):471–478

    Google Scholar 

  21. Colmenares MG, Simon U, Schmidt F, Dey S, Schmidt J, Thomas A, Gurlo A (2018) Tailoring of ordered mesoporous silica COK-12: Room temperature synthesis of mesocellular foam and multilamellar vesicles. Microporous Mesoporous Mater 1(267):142–149

    Google Scholar 

  22. Henning LM, Smales GJ, Colmenares MG, Bekheet MF, Simon U, Gurlo A (2023) Synthesis and properties of COK-12 large-pore mesocellular silica foam. Nano Select 4(3):202–212

    CAS  Google Scholar 

  23. Henning LM, Cubas DD, Colmenares MG, Schmidt J, Bekheet MF, Pauw BR, Gurlo A, Simon U (2019) High specific surface area ordered mesoporous silica COK-12 with tailored pore size. Microporous Mesoporous Mater 15(280):133–143

    Google Scholar 

  24. Colmenares M (2018) Ordered Mesoporous silica COK-12: Mesoscale tailoring, upscaling, continuous synthesis and application in the oxidative coupling of methane. Advanced Ceramic Materials Series 1

  25. Shao L, Wu K, Lin X, Shui M, Ma R, Wang D, Long N, Ren Y, Shu J (2014) Sol–gel preparation of V2O5 sheets and their lithium storage behaviors studied by electrochemical and in-situ X-ray diffraction techniques. Ceram Int 40(4):6115–6125

    CAS  Google Scholar 

  26. Jing P, Wei W, Luo W, Li X, Xu F, Li H, Wei M, Yu D, Zhu Q, Liu G (2020) In-situ XRD study of the structure and electrochemical performance of V2O5 nanosheets in aqueous zinc ion batteries. Inorg Chem Commun 1(117):107953

    Google Scholar 

  27. Henning LM (2023) Porous materials for water and air purification: from synthetic ordered mesoporous silica COK-12 to natural fungi (Doctoral dissertation, Technische Universität Berlin). Adv Ceram Mater 11:2569–8338

    Google Scholar 

  28. Henning LM, Müller JT, Smales GJ, Pauw BR, Schmidt J, Bekheet MF, Gurlo A, Simon U (2022) Hierarchically porous and mechanically stable monoliths from ordered mesoporous silica and their water filtration potential. Nanoscale Adv 4(18):3892–3908

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sehrawat S, Nehra SP, Duhan S (2024) In-situ hydrothermally derived highly responsive MgO doped mesoporous KIT-6 based novel humidity sensor. Mater Res Innovations 28(2):94–105

    CAS  Google Scholar 

  30. Malik P, Duhan S, Malik R (2024) A high-performance humidity sensor based on 3D porous SnO2-encapsulated MCM-48 for real-time breath monitoring and contactless gesture detection. Mater Adv 5:2510–2525

    CAS  Google Scholar 

  31. Poonia E, Duhan S, Kumar K, Kumar A, Jakhar S, Tomer VK (2019) One pot hydrothermal synthesis of ordered mesoporous SnO2/SBA-16 nanocomposites. J Porous Mater 1(26):553–560

    Google Scholar 

  32. He X, Geng W, Zhang B, Jia L, Duan L, Zhang Q (2016) Ultrahigh humidity sensitivity of NaCl-added 3D mesoporous silica KIT-6 and its sensing mechanism. RSC Adv 6(44):38391–38398

    CAS  Google Scholar 

  33. Madbouly AI, Morsy M, Alnahdi RF (2022) Microwave-assisted synthesis of Co-doped SnO2/rGO for indoor humidity monitoring. Ceram Int 48(10):13604–13614

    CAS  Google Scholar 

  34. Md Sin ND, Mamat MH, Malek MF, Rusop M (2014) Film-based humidity sensor with high sensitivity by ultrasonic-assisted solution growth method at different Zn: Sn precursor ratios. Appl Nanosci 4(7):829–838

    CAS  Google Scholar 

  35. Verma RK, Shukla RK (2023) Hydrothermal synthesis of pristine and cobalt doped MoS2 nanosheets for comparative study and application in humidity sensing. Materials Today: Proceedings. May 15.

  36. Bhavna DS (2024) Modification of mesoporous SBA-16 with cobalt doping for outstanding humidity sensor at room temperature. J Porous Mater 31(1):125–38

    CAS  Google Scholar 

  37. Pandey NK, Tiwari K, Roy A, Mishra A, Govindan A (2013) Ag-loaded WO3 ceramic nanomaterials: characterization and moisture sensing studies. Int J Appl Ceram Technol 10(1):150–159

    CAS  Google Scholar 

  38. Faia PM, Libardi J, Louro CS (2016) Effect of V2O5 doping on p-to n-conduction type transition of TiO2: WO3 composite humidity sensors. Sens Actuators, B Chem 1(222):952–964

    Google Scholar 

  39. Musa MZ, Mamat MH, Othman MA, Shameem BI, Nagamalai V, Malek MF, Rusop M (2020) Enhanced sensitivity of humidity sensor prepared using vertically aligned v-doped TiO2 nanorods array. J Electr Electron Syst Res (JEESR) 17:68–73

    Google Scholar 

  40. Akande AA, Dhonge BP, Mwakikunga BW, Machatine AG (2017) Gate voltage controlled humidity sensing using MOSFET of VO2 particles. Int J Chem Mol Nucl Mater Metal Engg 11(1):78–81

    Google Scholar 

  41. Tadeo IJ, Parasuraman R, Krupanidhi SB, Umarji AM (2020) Enhanced humidity responsive ultrasonically nebulised V2O5 thin films. Nano Express 1(1):010005

    Google Scholar 

  42. Pawar MS, Bankar PK, More MA, Late DJ (2015) Ultra-thin V2O5 nanosheet based humidity sensor, photodetector and its enhanced field emission properties. RSC Adv 5(108):88796–88804

    CAS  Google Scholar 

  43. Gonçalves JM, da Silva MI, Angnes L, Araki K (2020) Vanadium-containing electro and photocatalysts for the oxygen evolution reaction: a review. J Mater Chem A 8(5):2171–2206

    Google Scholar 

  44. Gazi S, Ng WK, Ganguly R, Moeljadi AM, Hirao H, Soo HS (2015) Selective photocatalytic C-C bond cleavage under ambient conditions with earth abundant vanadium complexes. Chem Sci 6(12):7130–7142

    CAS  PubMed  PubMed Central  Google Scholar 

  45. He S, Lin H, Qin L, Mao Z, He H, Li Y, Li Q (2017) Synthesis, stability, and intrinsic photocatalytic properties of vanadium diselenide. J Mater Chem A 5(5):2163–2171

    CAS  Google Scholar 

  46. Sajid MM, Shad NA, Javed Y, Khan SB, Zhang Z, Amin N, Zhai H (2020) Preparation and characterization of Vanadium pentoxide (V2O5) for photocatalytic degradation of monoazo and diazo dyes. Surf Interfaces 1(19):100502

    Google Scholar 

  47. Vasilić R, Stojadinović S, Radić N, Stefanov P, Dohčević-Mitrović Z, Grbić B (2015) One-step preparation and photocatalytic performance of vanadium doped TiO2 coatings. Mater Chem Phys 1(151):337–344

    Google Scholar 

  48. Tian L, Min S, Wang F, Zhang Z (2019) Metallic vanadium nitride as a noble-metal-free cocatalyst efficiently catalyzes photocatalytic hydrogen production with CdS nanoparticles under visible light irradiation. J Phys Chem C 123(47):28640–28650

    CAS  Google Scholar 

  49. Le Chi NT, Cam NT, Van Thuan D, Truong TT, Truc NT, Van Hoang C, Phuong TT, Pham TD, Tung MH, Thu NT, Phuong NM (2019) Synthesis of vanadium doped tantalum oxy-nitride for photocatalytic reduction of carbon dioxide under visible light. Appl Surf Sci 15(467):1249–1255

    Google Scholar 

  50. Tomer VK, Duhan S. (2015) Highly sensitive and stable relative humidity sensors based on WO3 modified mesoporous silica. Appl Phys Lett 106(6):063105

    Google Scholar 

  51. Nidhi DS, Kumar A, Duhan S, Goyat MS (2022) Single-pot hydrothermal derived TiO2/SBA-16 cubic mesoporous nanocomposite for humidity sensing. J Mater Sci 57(5):3441–51

    CAS  Google Scholar 

  52. Tomer VK, Duhan S (2016) A facile nanocasting synthesis of mesoporous Ag-doped SnO2 nanostructures with enhanced humidity sensing performance. Sens Actuators, B Chem 1(223):750–760

    Google Scholar 

  53. Boora A, Duhan S, Kumar V (2023) Novel highly flexible room temperature humidity sensor based on mesoporous NiO/TUD-1 hybrid nanocomposite. J Mater Sci 58(39):15421–15437

    CAS  Google Scholar 

Download references

Acknowledgement

Bhavna Rohilla expresses her gratitude to the UGC for funding this study through the JRF program, with NTA ref. no. 221610112839. Additionally, we express our gratitude to the DST-FIST, Department of Physics, DCRUST (Murthal), for generously providing UV–Vis spectroscopy, and Humidity Chamber which were instrumental in the completion of this research.

Author information

Authors and Affiliations

Authors

Contributions

B.R. has made substantial contributions to both conceptualizing and designing the article, as well as to synthesizing, analyzing, and interpreting the data presented within it. S.D. reviewed and has given approval to the manuscript, affirming its accuracy and integrity.

Corresponding author

Correspondence to Surender Duhan.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohilla, B., Duhan, S. Insights into V2O5/COK-12 nanostructures for RH sensor and catalytic applications. J Mater Sci 59, 11920–11936 (2024). https://doi.org/10.1007/s10853-024-09921-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09921-w

Navigation