Skip to main content
Log in

Innovative nanocomposite coating for aluminum alloy: superior corrosion resistance, flame retardancy, and mechanical strength for aerospace applications

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanocomposites containing impermeable two-dimensional materials are attracting considerable attention for their ability to shield metals from corrosion. Incorporating m-aminophenyltrimethoxysilane functionalized niobium nitride (NbN) into a coating matrix can bolster the barrier effect owing to its remarkable chemical and thermal stability. When integrated into graphitic carbon nitride (GCN) within polyurethane (PU), functionalized NbN enhances corrosion protection and imparts fire-retardant properties. Utilizing electrochemical techniques in chloride-rich environments, the protective efficacy of aluminum coated with polyurethane containing varying proportions of functionalized NbN/GCN was investigated. Electrochemical impedance spectroscopy measurements demonstrated improved coating resistance (Rcoat: 5.65 × 1011 Ω cm2) for PU/functionalized NbN/GCN, even after 600 h of electrolyte exposure. Furthermore, the resulting PU composite exhibited superior flame-retardant capabilities, manifesting significant reductions in peak heat release rate, total heat release, and total smoke production compared to pure PU. Featuring a water contact angle of 165°, the newly developed PU/functionalized NbN/GCN coating showcased exceptional water repellency. In terms of mechanical properties such as adhesion strength and hardness, PU/functionalized NbN/GCN demonstrated favorable characteristics within the PU substrate, maintaining structural integrity even after prolonged immersion. Consequently, the PU/functionalized NbN/GCN nanocomposite presents itself as a promising coating component for aerospace applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Andreeva DV, Skorb EV (2014) 13—multi-layer smart coatings for corrosion protection of aluminium alloys and steel. Handbook of smart coatings for materials protection. Woodhead Publishing, Cambridge, pp 307–327

    Chapter  Google Scholar 

  2. Xavier JR, Jeeva N (2022) Evaluation of newly synthesized nanocomposites containing thiazole-modified aluminium nitride nanoparticles for aerospace applications. Mater Chem Phys 286:126200

    Article  CAS  Google Scholar 

  3. Muñoz L, Pineda F, Martínez C, Sancy M, Urzua M, Flores M, Encinas MV, Páez MA (2019) Improving the interaction between aluminum surfaces and polymer coatings. Surf Coat Technol 358:435–442. https://doi.org/10.1016/j.surfcoat.2018.11.051

    Article  CAS  Google Scholar 

  4. Xavier JR (2020) Evaluation of anticorrosion properties of epoxy-silane hybrid nanocomposite coating on AA6082 aluminum alloy. Surf Engin Appl Electrochem 56:762–772. https://doi.org/10.3103/S1068375520060150

    Article  Google Scholar 

  5. Jia W, Cao H, Wang T, Min Y, Xu Q (2023) Electrochemical behavior and anti-corrosion property of Ti3C2Tx MXene/LDH heterostructured coating on aluminum alloy. Surf Coat Technol 463:129551

    Article  CAS  Google Scholar 

  6. Xavier JR (2020) Experimental investigation of the hybrid epoxy-silane coating for enhanced protection against the corrosion of aluminum alloy AA7075 frame in solar cells. Macromol Res 28:501–509. https://doi.org/10.1007/s13233-020-8065-5

    Article  CAS  Google Scholar 

  7. Zeng Q, Min X, Luo Z, Dai H, Liao B (2022) In-situ preparation of superhydrophobic Zn-Al layered double hydroxide coatings for corrosion protection of aluminum alloy. Mater Lett 328:133077

    Article  CAS  Google Scholar 

  8. Monetta T, Acquesta A, Maresca V, Signore R, Bellucci F, Di Petta P, Lo Masti M (2013) Characterization of aluminum alloys environmentally friendly surface treatments for aircraft and aerospace industry. Surf Interface Anal 45:1522–1529. https://doi.org/10.1002/sia.5280

    Article  CAS  Google Scholar 

  9. Xavier JR, Vinodhini SP (2023) Investigation into the effect of introducing functionalized hafnium carbide with GO in the epoxy coated aluminium alloy for aerospace components. Colloids Surf, A Physicochem Eng 658:130667

    Article  CAS  Google Scholar 

  10. Njoku CN, Bai W, Arukalam IO, Yang L, Hou B, Njoku DI, Li Y (2020) Epoxy-based smart coating with self-repairing polyurea-formaldehyde microcapsules for anticorrosion protection of aluminum alloy AA2024. J Coat Technol Res 17:797–813

    Article  CAS  Google Scholar 

  11. Xavier JR, Nishimura T (2017) Evaluation of the corrosion protection performance of epoxy coatings containing Mg nanoparticle on carbon steel in 0.1 M NaCl solution by SECM and EIS techniques. J Coat Technol Res 14:395–406. https://doi.org/10.1007/s11998-016-9856-7

    Article  CAS  Google Scholar 

  12. Yu C, Salzano de Luna M, Russo A, Adamiano I, Scherillo F, Wang Z, Zhang X, Xia H, Lavorgna M (2021) Role of diisocyanate structure on self-healing and anticorrosion properties of waterborne polyurethane coatings. Adv Mater Interfaces 8(10):2100117

    Article  CAS  Google Scholar 

  13. Raj XJ (2017) Application of EIS and SECM studies for investigation of anticorrosion properties of epoxy coatings containing zinc oxide nanoparticles on mild steel in 3.5% NaCl solution. J Mater Eng Perform 26:3245–3253. https://doi.org/10.1007/s11665-017-2770

    Article  CAS  Google Scholar 

  14. Hlushko H, Cubides Y, Hlushko R, Kelly TM, Castaneda H, Sukhishvili SA (2018) Hydrophobic antioxidant polymers for corrosion protection of an aluminum alloy. ACS Sustain Chem Eng 6(11):14302–14313

    Article  CAS  Google Scholar 

  15. Bandeira RM, van Drunen J, Garcia AC, Tremiliosi-Filho G (2017) Influence of the thickness and roughness of polyaniline coatings on corrosion protection of AA7075 aluminum alloy. Electrochim Acta 240:215–224. https://doi.org/10.1016/j.electacta.2017.04.083

    Article  CAS  Google Scholar 

  16. Xavier JR (2021) Electrochemical and mechanical investigation of newly synthesized NiO-ZrO2 nanoparticle–grafted polyurethane nanocomposite coating on mild steel in chloride media. J Mater Eng Perform 30(2):1554–1566

    Article  CAS  Google Scholar 

  17. Wang Y, Chang W, Wang Z, Ma J, Yu X, Li Y, Zhang L (2022) Silanized MXene/carbon nanotube composites as a shielding layer of polyurethane coatings for anticorrosion. ACS Applied Nano Materials 5(1):1408–1418

    Article  CAS  Google Scholar 

  18. Li F, Zhao M, Zhan Y, Wu C, Zhang Y, Jiang X, Sun Z (2022) Facile fabrication of novel superhydrophobic Al2O3/polysiloxane hybrids coatings for aluminum alloy corrosion protection. Colloids Surf A Physicochem Eng Asp 640:128444

    Article  CAS  Google Scholar 

  19. Xavier JR (2021) Superior corrosion protection performance of polypdopamine-intercalated CeO2/polyurethane nanocomposite coatings on steel in 3.5% NaCl solution. J Appl Electrochem 51:959–975

    Article  CAS  Google Scholar 

  20. Safavi MS, Walsh FC, Visai L, Khalil-Allafi J (2022) Progress in niobium oxide-containing coatings for biomedical applications: a critical review. ACS Omega 7(11):9088–9107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Atapour M, Rajaei V, Trasatti S, Casaletto MP, Chiarello GL (2020) Thin niobium and niobium nitride PVD coatings on AISI 304 stainless steel as bipolar plates for PEMFCs. Coatings 10:889. https://doi.org/10.3390/coatings10090889

    Article  CAS  Google Scholar 

  22. Laskoski M, Prestigiacomo J, Dyatkin B, Keller TM, Mahzabeen W, Shepherd AR, Daftary MN, Clarke JS, Neal A, Qadri SB, Osofsky M (2021) Synthesis and material properties of polymer-derived niobium carbide and niobium nitride nanocrystalline ceramics. Ceram Int 47:1163–1168. https://doi.org/10.1016/j.ceramint.2020.08.232

    Article  CAS  Google Scholar 

  23. Jeeva N, Thirunavukkarasu K, Xavier JR (2024) Multilayer functional polyurethane nanocomposite coating containing graphene oxide and silanized zirconium nitride for the protection of aluminum alloy structures in aerospace industries. J of Materi Eng and Perform. https://doi.org/10.1007/s11665-024-09392-9

    Article  Google Scholar 

  24. Rajendran R, Muthukrishnan K, Chinnapiyan V (2022) Investigations on the performance of poly(o-toluidine)/silicon dioxide nanocomposite coatings for the corrosion protection of mild steel. Anti Corros Methods Mater 69(6):586–591. https://doi.org/10.1108/ACMM-01-2022-2591

    Article  CAS  Google Scholar 

  25. Xavier JR (2020) Electrochemical, mechanical and adhesive properties of surface modified NiO-epoxy nanocomposite coatings on mild steel. Mater Sci Eng B 260:114639. https://doi.org/10.1016/j.mseb.2020.114639

    Article  CAS  Google Scholar 

  26. Sujitha VS, Ramesh B, Xavier JR (2024) Effects of incorporation of nanotitania in magnesium phosphate cement for the protection of carbon steel in harsh environments. Archiv Civ Mech Eng 24:79. https://doi.org/10.1007/s43452-024-00896-8

    Article  Google Scholar 

  27. Beryl JR, Xavier JR (2020) Mechanical and corrosion protection properties of polymer–clay nanocomposite coatings for mild steel in marine environment. Emergent Mater 3:75–85. https://doi.org/10.1007/s42247-020-00073-6

    Article  CAS  Google Scholar 

  28. Xavier JR, Dhanalakshmi C, Chandraraj SS, Vinodhini SP (2023) Bionanocomposites containing SnO2 with improved chemical resistance and hydrophobic behaviours for applications in food packaging industry. Trans Nonferrous Metals Soc China 33:2136–2154. https://doi.org/10.1016/S1003-6326(23)66249-1

    Article  Google Scholar 

  29. Xavier JR, Vinodhini SP, Srinivasan N (2022) Effects of incorporating silanized nanoclay on the barrier, hydrophobic and mechanical properties of epoxy resin in chloride environment. Ind Eng Chem Res 61(20):6973–6986

    Article  CAS  Google Scholar 

  30. Nguyen TV, Tran DL, Nguyen TA, Nguyen TTH, Dao PH, Mac VP, Do MT, Nguyen TM, Dang TML (2022) Ce-loaded silica nanoparticles in the epoxy nanocomposite coating for anticorrosion protection of carbon steel. Anti-Corros Methods Mater 69(5):514–523. https://doi.org/10.1108/ACMM-03-2022-2629

    Article  CAS  Google Scholar 

  31. Xavier JR (2020) Investigation on the anticorrosion, adhesion and mechanical performance of epoxy nanocomposite coatings containing epoxy-silane treated nano-MoO3 on mild steel. J Adhes Sci Technol 34(2):115–134

    Article  CAS  Google Scholar 

  32. Liu S, Jing Y, Zhang T, Zhang J, Xu F, Song Q, Ye Q, Liu S, Liu W (2021) Excellent tribological and anti-corrosion performances enabled by novel hollow graphite carbon nanosphere with controlled release of corrosion inhibitor. Chem Eng J 412:128648. https://doi.org/10.1016/j.cej.2021.128648

    Article  CAS  Google Scholar 

  33. Ma Z, Zhang Z, Zhao F et al (2022) A multifunctional coating for cotton fabrics integrating superior performance of flame-retardant and self-cleaning. Adv Compos Hybrid Mater 5:2817–2833. https://doi.org/10.1007/s42114-022-00464-9

    Article  CAS  Google Scholar 

  34. Randis R, Darmadi DB, Gapsari F, Sonief AAA, Akpan ED, Ebenso EE (2023) The potential of nanocomposite-based coatings for corrosion protection of metals: A Review. J Mole Liq 5:123067

    Article  Google Scholar 

  35. Xavier JR, Vinodhini SP (2023) Flame retardant and anticorrosion behavior of multifunctional epoxy nanocomposite coatings containing graphitic carbon nitride/silanized HfO2 nanofillers for the protection of steel surface in automobile industry. ACS Chem Health Saf 30(6):428–450

    Article  CAS  Google Scholar 

  36. Zhou Z, Ji X, Pourhashem S, Duan J, Hou B (2021) Investigating the effects of g-C3N4/Graphene oxide nanohybrids on corrosion resistance of waterborne epoxy coatings. Compos A Appl Sci Manuf 149:106568

    Article  CAS  Google Scholar 

  37. Xavier JR (2024) Synthesis and characterization of polypyrrole/graphitic carbon nitride/niobium pentoxide nanocomposite for high-performance energy storage applications. J Appl Polym Sci 141(15):e55211. https://doi.org/10.1002/app.55211

    Article  CAS  Google Scholar 

  38. Xia Y, Tong L, Feng X, Xiang H, He Y, Liu X (2024) Effects of polydopamine functionalized graphitic carbon nitride-cerium oxide nanofiller on the corrosion resistance of epoxy coating. Prog Org Coat 187:108111

    Article  CAS  Google Scholar 

  39. Xavier JR, Vinodhini SP (2023) Flexible and high-energy density asymmetrical supercapacitors based on polyindole/GCN/MnO2 nanocomposite for energy storage applications. J Mater Sci 58:18147–18168. https://doi.org/10.1007/s10853-023-09176-x

    Article  CAS  Google Scholar 

  40. Xavier JR, Vinodhini SP, Beryl JR (2024) Flame retardant and corrosion protection performance of multifunctional nanocomposites containing graphitic carbon nitride/silanized Ta2O5 nanofillers for the protection of steel surface for industrial applications. Colloids Surf A Physicochem Eng Asp 681:132748

    Article  CAS  Google Scholar 

  41. El-Sabban HA, Deyab MA (2023) Novel highly efficient ternary ZnO wrapped PPy-NTs/g-C3N4 nanocomposite as an epoxy coating for corrosion protection. Sci Rep 13(1):21410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vinodhini SP, Xavier JR (2024) Novel multifunctional nanocomposites containing graphitic carbon nitride/silanized Nb2O5 nanofillers for the protection of steel surfaces in the automobile industry. J Mole Struct 412:128648. https://doi.org/10.1016/j.cej.2021.128648

    Article  CAS  Google Scholar 

  43. Lan Y, Xiao G, Li Z, Chen C, Chen C, Zou R, Wang M, Cao M, Shang S (2024) Enhancing the comprehensive corrosion resistance of waterborne epoxy coatings: combination of bimetal nanocontainer ZIF-8-Ce and g-C3N4. Colloids Surf A Physicochem Eng Asp 682:132954

    Article  CAS  Google Scholar 

  44. Yan SC, Li ZS, Zou ZG (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25(17):10397–10401

    Article  CAS  PubMed  Google Scholar 

  45. Florentino-Madiedo L, Díaz-Faes E, Barriocanal C (2022) Relationship between gCN structure and photocatalytic water splitting efficiency. Carbon 187:462–476. https://doi.org/10.1016/j.carbon.2021.11.030

    Article  CAS  Google Scholar 

  46. Tang H, Tian X, Luo J, Zeng J, Li Y, Song H, Liao S (2017) A Co-doped porous niobium nitride nanogrid as an effective oxygen reduction catalyst. J Mater Chem A 5:14278–14285

    Article  CAS  Google Scholar 

  47. Han Z, Hu X, Tian J, Li G, Mingyuan G (2004) Magnetron sputtered NbN thin films and mechanical properties. Surf Coat Technol 179:188–192

    Article  CAS  Google Scholar 

  48. Ufuktepe Y, Farha AH, Kimura S, Hajiri T, Karadağ F, Al Mamun MA, Elmustafa AA, Myneni G, Elsayed-Ali HE (2013) Structural, electronic, and mechanical properties of niobium nitride prepared by thermal diffusion in nitrogen. Mater Chem Phys 141:393–400

    Article  CAS  Google Scholar 

  49. Tabish M, Zhao J, Kumar A, Yan J, Wang J, Shi F, Zhang J, Peng L, Mushtaq MA, Yasin G (2022) Developing epoxy-based anti-corrosion functional nanocomposite coating with CaFe-Tolyl-triazole layered double hydroxide@ g-C3N4 as nanofillers on Q235 steel substrate against NaCl corrosive environment. Chem Eng J 450:137624

    Article  CAS  Google Scholar 

  50. Pourhashem S, Duan J, Guan F, Wang N, Gao Y, Hou B (2020) New effects of TiO2 nanotube/g-C3N4 hybrids on the corrosion protection performance of epoxy coatings. J Mol Liq 317:114214

    Article  CAS  Google Scholar 

  51. Xavier JR (2023) Improvement in corrosion resistance and mechanical properties of epoxy coatings on steel with the addition of thiadiazole treated ZrC. J Mater Eng Perform 32(9):3980–3994

    Article  CAS  Google Scholar 

  52. Xavier JR, Srinivasan S (2024) Multilayer epoxy/GO/silane/Nb2C nanocomposite: a promising coating material for the aerospace applications. J Adhes Sci Technol 38(1):44–69. https://doi.org/10.1080/01694243.2023.2221387

    Article  CAS  Google Scholar 

  53. Zhang K, Ma C, Zheng Y, Zhou F, Xiao Y, Xing W, Hu Y (2021) A novel coating of hyperbranched poly (urethane-phosphine oxide) for poly (methyl methacrylate) with high fire safety, excellent adhesion and transparency. Prog Org Coat 161:106481

    Article  CAS  Google Scholar 

  54. Xavier JR (2023) Investigation of anticorrosion, flame retardant and mechanical properties of polyurethane/GO nanocomposites coated AJ62 Mg alloy for aerospace/automobile components. Diam Relat Mater 136:110025

    Article  CAS  Google Scholar 

  55. Habibpour S, Um JG, Jun YS, Bhargava P, Park CB, Yu A (2021) Structural impact of graphene nanoribbon on mechanical properties and anti-corrosion performance of polyurethane nanocomposites. Chem Eng J 405:126858

    Article  CAS  Google Scholar 

  56. Tsai PY, Chen TE, Lee YL (2018) Development and characterization of anticorrosion and antifriction properties for high performance polyurethane/graphene composite coatings. Coatings 8(7):250

    Article  Google Scholar 

  57. Joseph Raj X, Nishimura T (2016) Galvanic corrosion behaviour of iron coupled to aluminium in NaCl solution by scanning eectrochemical microscopy. Prot Met Phys Chem Surf 52:543–554. https://doi.org/10.1134/S2070205116030242

    Article  CAS  Google Scholar 

  58. Joseph Raj X, Nishimura T (2016) Scanning electrochemical microscopy for the investigation of galvanic corrosion of iron with zinc in 01 M NaCl solution. J Mater Eng Perform 25:474–486. https://doi.org/10.1007/s11665-015-1861-y

    Article  CAS  Google Scholar 

  59. Sowa M, Wala M, Blacha-Grzechnik A, Maciej A, Kazek-Kęsik A, Stolarczyk A, Simka W (2021) Corrosion inhibitor-modified plasma electrolytic oxidation coatings on 6061 aluminum alloy. Materials 14(3):619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jeeva N, Thirunavukkarasu K, Xavier JR (2024) Influence of multifunctional graphene oxide and silanized vanadium nitride in polyurethane coatings for the protection of aluminium alloy in aerospace industries. Diam Relat Mater 142:110792. https://doi.org/10.1016/j.diamond.2024.110792

    Article  CAS  Google Scholar 

  61. Yang C, Wang C, Zhao X, Shen Z, Wen M, Zhao C, Sheng L, Wang Y, Daokui Xu, Zheng Y, Chu PK, Zeng X (2024) Superhydrophobic surface on MAO-processed AZ31B alloy with zinc phosphate nanoflower arrays for excellent corrosion resistance in salt and acidic environments. Mater Des 239:112769

    Article  CAS  Google Scholar 

  62. Beryl JR, Xavier JR (2024) Investigation of smart graphene oxide multilayer nanocoating for improved steel structural protection in natural seawater. J Mater Sci 59:458–490. https://doi.org/10.1007/s10853-023-09190-z

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Raj Xavier.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Zhao Shen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 853 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xavier, J.R., Vinodhini, S.P. & Ganesan, R. Innovative nanocomposite coating for aluminum alloy: superior corrosion resistance, flame retardancy, and mechanical strength for aerospace applications. J Mater Sci 59, 12830–12861 (2024). https://doi.org/10.1007/s10853-024-09919-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09919-4

Navigation