Skip to main content
Log in

Antioxidative ultrafast light-driven poly(N-isopropylacrylamide) hydrogel actuator enabled by (3-aminopropyl)triethoxysilane-modified MXene and polyvinyl alcohol

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Developing hydrogel actuators with excellent driving performance and extended lifespan remains challenging. Ti3C2Tx MXene, as a two-dimensional nanomaterial with a unique layered structure, has attracted widespread attention in flexible hydrogel actuators for its excellent optical absorption properties and tunable surface functionality. However, MXene faces difficulties in dispersion and is prone to oxidation, which significantly hinders the development and use of MXene-based hydrogel actuators. In this study, we fabricated a near-infrared light-driven hydrogel actuator with rapid photo responsiveness and antioxidative properties by incorporating modified MXene with antioxidant characteristics and the pore-forming agent polyvinyl alcohol into the poly(N-isopropylacrylamide) (PNIPAM) hydrogel system. We functionalized MXene nanosheets with (3-aminopropyl)triethoxysilane (APTES), effectively enhancing antioxidative properties, preventing structural degradation caused by spontaneous oxidation, and improving surface properties. This enhanced the dispersion stability of MXene in the system and extended its lifespan from 7 days to over two weeks. The hydrophilic polyvinyl alcohol chains served as drainage channels during hydrogel contraction, imparting the hydrogel with rapid driving capabilities (127.1° s−1). Additionally, leveraging the fast response characteristics, we designed an octopus-inspired light-driven soft swimmer and gripper. This work provides novel insights into the application of intelligent responsive hydrogels in biomimetic and practical scenarios.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data and code availability

Upon acceptance of the manuscript by the journal, readers will have access to the pertinent data and code linked to this research through the journal-designated electronic repository with a DOI. The dataset and code utilized to corroborate the outcomes of this study are accessible upon request.

References

  1. Brini F, Mseddi K, Brestic M, Landi M (2022) Hormone-mediated plant responses to light quality and quantity. Environ Exp Bot 202:105026. https://doi.org/10.1016/j.envexpbot.2022.105026

    Article  CAS  Google Scholar 

  2. Costello JH, Colin SP, Dabiri JO, Gemmell BJ, Lucas KN, Sutherland KR (2021) The hydrodynamics of jellyfish swimming. Ann Rev Mar Sci 13:375–396. https://doi.org/10.1146/annurev-marine-031120-091442

    Article  PubMed  Google Scholar 

  3. Lee BP, Konst S (2014) Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry. Adv Mater 26(21):3415–3419. https://doi.org/10.1002/adma.201306137

    Article  CAS  PubMed  Google Scholar 

  4. Liu M, Xu J, Li Q (2021) Design and experiment of piezoelectric-shape memory alloy composite shock absorber. Mater Lett 304:130538. https://doi.org/10.1016/j.matlet.2021.130538

    Article  CAS  Google Scholar 

  5. Kholkhoev BC, Bardakova KN, Epifanov EO et al (2023) A photosensitive composition based on an aromatic polyamide for LCD 4D printing of shape memory mechanically robust materials. Chem Eng J 454(3):140423. https://doi.org/10.1016/j.cej.2022.140423

    Article  CAS  Google Scholar 

  6. Ni C, Chen D, Wen X, Jin B, He Y, Xie T, Zhao Q (2023) High speed underwater hydrogel robots with programmable motions powered by light. Nat Commun 14(1):7672. https://doi.org/10.1038/s41467-023-43576-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang SC, Zhu YJ, Huang XY, Xia XX, Qian ZG (2024) Programmable adhesion and morphing of protein hydrogels for underwater robots. Nat Commun 15(1):195. https://doi.org/10.1038/s41467-023-44564-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Park H, Kim JU, Kim S, Hwang NS, Kim HD (2023) Sprayable Ti3C2 MXene hydrogel for wound healing and drug release system. Mater Today Bio 23:100881. https://doi.org/10.1016/j.mtbio.2023.100881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang Y, Zhao X, Wang S, Zhang Y, Yang A, Cheng Y, Chen X (2023) Ultra-durable cell-free bioactive hydrogel with fast shape memory and on-demand drug release for cartilage regeneration. Nat Commun 14(1):7771. https://doi.org/10.1038/s41467-023-43334-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Choi JH, Lee JS, Yang DH et al (2023) Development of a temperature-responsive hydrogel incorporating PVA into NIPAAm for controllable drug release in skin regeneration. ACS Omega 8(46):44076–44085. https://doi.org/10.1021/acsomega.3c06291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tan Y, Wang D, Xu H, Yang Y, An W, Yu L, Xiao Z, Xu S (2018) A fast, reversible, and robust gradient nanocomposite hydrogel actuator with water-promoted thermal response. Macromol Rapid Commun 39(8):e1700863. https://doi.org/10.1002/marc.201700863

    Article  CAS  PubMed  Google Scholar 

  12. Wang X, Xue P, Ma S, Gong Y, Xu X (2023) Polydopamine-modified MXene-integrated poly(N-isopropylacrylamide) to construct ultrafast photoresponsive bilayer hydrogel actuators with smart adhesion. ACS Appl Mater Interfaces 15(42):49689–49700. https://doi.org/10.1021/acsami.3c12203

    Article  CAS  PubMed  Google Scholar 

  13. Zhang X, Xue P, Yang X et al (2022) Near-infrared light-driven shape-programmable hydrogel actuators loaded with metal-organic frameworks. ACS Appl Mater Interfaces 14(9):11834–11841. https://doi.org/10.1021/acsami.1c24702

    Article  CAS  PubMed  Google Scholar 

  14. Liu H, Jia X, Liu R et al (2022) Multifunctional gradient hydrogel with ultrafast thermo-responsive actuation and ultrahigh conductivity. J Mater Chem A 10(41):21874–21883. https://doi.org/10.1039/d2ta05770k

    Article  CAS  Google Scholar 

  15. Xue P, Bisoyi HK, Chen Y et al (2021) Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets. Angew Chem Int Ed Engl 60(7):3390–3396. https://doi.org/10.1002/anie.202014533

    Article  CAS  PubMed  Google Scholar 

  16. Zhu QL, Dai CF, Wagner D, Khoruzhenko O, Hong W, Breu J, Zheng Q, Wu ZL (2021) Patterned electrode assisted one-step fabrication of biomimetic morphing hydrogels with sophisticated anisotropic structures. Adv Sci 8(24):e2102353. https://doi.org/10.1002/advs.202102353

    Article  CAS  Google Scholar 

  17. Han Z, Yuan M, Liu L, Zhang K, Zhao B, He B, Liang Y, Li F (2023) pH-responsive wound dressings: advances and prospects. Nanoscale Horiz 8:422–440. https://doi.org/10.1039/D2NH00574C

    Article  CAS  PubMed  Google Scholar 

  18. Hao F, Wang L, Chen B, Qiu L, Nie J, Ma G (2021) Bifunctional smart hydrogel dressing with strain sensitivity and NIR-responsive performance. ACS Appl Mater Interfaces 13(39):46938–46950. https://doi.org/10.1021/acsami.1c15312

    Article  CAS  PubMed  Google Scholar 

  19. Dong L, Ren M, Wang Y et al (2021) Self-sensing coaxial muscle fibers with bi-lengthwise actuation. Mater Horiz 8(9):2541–2552. https://doi.org/10.1039/d1mh00743b

    Article  CAS  PubMed  Google Scholar 

  20. Oh B, Park YG, Jung H, Ji S, Cheong WH, Cheon J, Lee W, Park JU (2020) Untethered soft robotics with fully integrated wireless sensing and actuating systems for somatosensory and respiratory functions. Soft Robot 7(5):564–573. https://doi.org/10.1089/soro.2019.0066

    Article  PubMed  Google Scholar 

  21. Wang C, Sim K, Chen J et al (2018) Soft ultrathin electronics innervated adaptive fully soft robots. Adv Mater 30(13):e1706695. https://doi.org/10.1002/adma.201706695

    Article  CAS  PubMed  Google Scholar 

  22. Liao W, Yang Z (2021) The integration of sensing and actuating based on a simple design fiber actuator towards intelligent soft robots. Adv Mater Technol 7(6):2101260. https://doi.org/10.1002/admt.202101260

    Article  Google Scholar 

  23. Chen L, Weng M, Zhou P, Huang F, Liu C, Fan S, Zhang W (2018) Graphene-based actuator with integrated-sensing function. Adv Funct Mater 29(5):1806057. https://doi.org/10.1002/adfm.201806057

    Article  CAS  Google Scholar 

  24. Deng H, Zhang C, Su JW, Xie Y, Zhang C, Lin J (2018) Bioinspired multi-responsive soft actuators controlled by laser tailored graphene structures. J Mater Chem B 6(34):5415–5423. https://doi.org/10.1039/c8tb01285g

    Article  CAS  PubMed  Google Scholar 

  25. Amjadi M, Sitti M (2018) Self-sensing paper actuators based on graphite-carbon nanotube hybrid films. Adv Sci 5(7):1800239. https://doi.org/10.1002/advs.201800239

    Article  CAS  Google Scholar 

  26. Xiao Y, Lin J, Xiao J et al (2021) A multi-functional light-driven actuator with an integrated temperature-sensing function based on a carbon nanotube composite. Nanoscale 13(12):6259–6265. https://doi.org/10.1039/d0nr09210j

    Article  CAS  PubMed  Google Scholar 

  27. Zhang J, Sun D, Zhang B et al (2022) Intrinsic carbon nanotube liquid crystalline elastomer photoactuators for high-definition biomechanics. Mater Horiz 9(3):1045–1056. https://doi.org/10.1039/d1mh01810h

    Article  CAS  PubMed  Google Scholar 

  28. Cao Y, Li W, Quan F, Xia Y, Xiong Z (2022) Green–light–driven poly(N-isopropylacrylamide-acrylamide)/Fe3O4 nanocomposite hydrogel actuators. Front Mater 9:827608. https://doi.org/10.3389/fmats.2022.827608

    Article  Google Scholar 

  29. Xue P, Valenzuela C, Ma S, Zhang X, Ma J, Chen Y, Xu X, Wang L (2023) Highly conductive MXene/PEDOT:PSS-integrated poly(N-Isopropylacrylamide) hydrogels for bioinspired somatosensory soft actuators. Adv Funct Mater 33(24):2214867. https://doi.org/10.1002/adfm.202214867

    Article  CAS  Google Scholar 

  30. Wang X, Wang X, Yin J et al (2022) Mechanically robust, degradable and conductive MXene-composited gelatin organohydrogel with environmental stability and self-adhesiveness for multifunctional sensor. Compos Part B Eng 241:110052. https://doi.org/10.1016/j.compositesb.2022.110052

    Article  CAS  Google Scholar 

  31. Wang H, Zhang J, Wu Y, Huang H, Li G, Zhang X, Wang Z (2016) Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination. Appl Surf Sci 384:287–293. https://doi.org/10.1016/j.apsusc.2016.05.060

    Article  CAS  Google Scholar 

  32. He Y, Deng Z, Wang YJ, Zhao Y, Chen L (2022) Polysaccharide/Ti3C2Tx MXene adhesive hydrogels with self-healing ability for multifunctional and sensitive sensors. Carbohydr Polym 291:119572. https://doi.org/10.1016/j.carbpol.2022.119572

    Article  CAS  PubMed  Google Scholar 

  33. Shin H, Lee H, Seo Y, Jeong W, Han TH (2023) Grafting behavior of amine ligands for surface modification of MXene. Langmuir 39(6):2358–2367. https://doi.org/10.1021/acs.langmuir.2c03094

    Article  CAS  PubMed  Google Scholar 

  34. Zheng Y, Wang Y, Zhao J, Li Y (2023) Electrostatic interfacial cross-linking and structurally oriented fiber constructed by surface-modified 2D MXene for high-performance flexible pseudocapacitive storage. ACS Nano 17(3):2487–2496. https://doi.org/10.1021/acsnano.2c10065

    Article  CAS  PubMed  Google Scholar 

  35. Mičušík M, Šlouf M, Stepura A, Soyka Y, Ovodok E, Procházka M, Omastová M (2023) Aging of 2D MXene nanoparticles in air: an XPS and TEM study. Appl Surf Sci 610:155351. https://doi.org/10.1016/j.apsusc.2022.155351

    Article  CAS  Google Scholar 

  36. Huang S, Mochalin VN (2019) Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions. Inorg Chem 58(3):1958–1966. https://doi.org/10.1021/acs.inorgchem.8b02890

    Article  CAS  PubMed  Google Scholar 

  37. Li X, Ma X, Zhang H et al (2023) Ambient-stable MXene with superior performance suitable for widespread applications. Chem Eng J 455:140635. https://doi.org/10.1016/j.cej.2022.140635

    Article  CAS  Google Scholar 

  38. Ji J, Zhao L, Shen Y, Liu S, Zhang Y (2019) Covalent stabilization and functionalization of MXene via silylation reactions with improved surface properties. FlatChem 17:100128. https://doi.org/10.1016/j.flatc.2019.100128

    Article  CAS  Google Scholar 

  39. Ning Y, Jian D, Liu S, Chen F, Song Y, Li S, Liu B (2023) Designing a Ti3C2Tx MXene with long-term antioxidant stability for high-performance anti-corrosion coatings. Carbon 202:20–30. https://doi.org/10.1016/j.carbon.2022.10.042

    Article  CAS  Google Scholar 

  40. Zhang JT, Cheng SX, Zhuo RX (2003) Poly(vinyl alcohol)/poly(N-isopropylacrylamide) semi-interpenetrating polymer network hydrogels with rapid response to temperature changes. Colloid Polym Sci 281(6):580–583. https://doi.org/10.1007/s00396-002-0829-2

    Article  CAS  Google Scholar 

  41. Wei Y, Zhang P, Soomro RA, Zhu Q, Xu B (2021) Advances in the synthesis of 2D MXenes. Adv Mater 33(39):2103148. https://doi.org/10.1002/adma.202103148

    Article  CAS  Google Scholar 

  42. Xu DX, Li ZD, Li LS, Wang J (2020) Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Adv Funct Mater 30(47):2000712. https://doi.org/10.1002/adfm.202000712

    Article  CAS  Google Scholar 

  43. Tian Y, Xu Z, Qi H et al (2024) Magnetic-field induced shape memory hydrogels for deformable actuators. Soft Matter. https://doi.org/10.1039/d4sm00248b

    Article  PubMed  Google Scholar 

  44. Long S, Liu C, Ren H, Hu Y, Chen C, Huang Y, Li X (2024) NIR-mediated deformation from a CNT-based bilayer hydrogel. Polymers 16(8):1152. https://doi.org/10.3390/polym16081152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ma Y, Lu Y, Yue Y et al (2024) Nanocellulose-mediated bilayer hydrogel actuators with thermo-responsive, shape memory and self-sensing performances. Carbohydr Polym 335:122067. https://doi.org/10.1016/j.carbpol.2024.122067

    Article  CAS  PubMed  Google Scholar 

  46. Yang Y, Tian F, Wang X, Xu P, An W, Hu Y, Xu S (2019) Biomimetic color-changing hierarchical and gradient hydrogel actuators based on salt-induced microphase separation. ACS Appl Mater Interfaces 11:48428–48436. https://doi.org/10.1021/acsami.9b17904

    Article  CAS  PubMed  Google Scholar 

  47. Hua L, Xie M, Jian Y, Wu B, Chen C, Zhao C (2019) Multiple-responsive and amphibious hydrogel actuator based on asymmetric UCST-type volume phase transition. ACS Appl Mater Interfaces 11:43641–43648. https://doi.org/10.1021/acsami.9b17159

    Article  CAS  PubMed  Google Scholar 

  48. Wei S, Lu W, Le X et al (2019) Bioinspired synergistic fluorescence-color-switchable polymeric hydrogel actuators. Angew Chem 131(45):16389–16397. https://doi.org/10.1002/ange.201908437

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52173262). The authors extend their appreciation to all members of the laboratory at Tianjin University for their valuable insights and assistance throughout various stages of this research, despite not being listed as authors.

Author information

Authors and Affiliations

Authors

Contributions

Yanan Gong: Conceptualization, Formal analysis, Investigation, Data curation, Writing—original draft. Xue Pan: Formal analysis, Visualization, Investigation. Xinyi Wang: Formal analysis, Data curation. Shaoshuai Ma: Supervision, Writing—review & editing. Xinhua Xu: Writing—review & editing.

Corresponding authors

Correspondence to Shaoshuai Ma or Xinhua Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Peiyao Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Xue, P., Wang, X. et al. Antioxidative ultrafast light-driven poly(N-isopropylacrylamide) hydrogel actuator enabled by (3-aminopropyl)triethoxysilane-modified MXene and polyvinyl alcohol. J Mater Sci 59, 12447–12463 (2024). https://doi.org/10.1007/s10853-024-09917-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09917-6

Navigation