Skip to main content
Log in

Fuel assisted crystal structure tailoring of manganese oxides and their surface reactivity towards oxygen evolution reaction

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A simple and robust method has been proposed to synthesize manganese oxide polymorphs wherein the phase transition among the manganese oxides crystal structures was evidenced under the assistance of fuels via solution combustion route. The cubic-Mn2O3 dominated with glycine and urea, while spinel tetragonal-Mn3O4 was favored with sucrose, citric acid and maleic acid fuels. The average particle size of 17 nm and 21 nm is observed for Mn2O3 derived from urea and glycine respectively. The Mn2O3 derived from urea (Mn2O3–U) exhibits high fraction of Mn3+ content and oxygen defects on the surface compared to the Mn2O3 derived from glycine (Mn2O3–G). In addition, Mn2O3–U exhibits ~ 5 times higher electrochemical active surface area (237 cm−2) compared to Mn2O3–G (47.5 cm−2). Owing to the enhanced surface properties, Mn2O3–U demonstrates superior OER performance where it exhibits a low overpotential of 270 mV at the current density of 10 mA cm−2 compared to Mn2O3–G (590 mV 10 mA cm−2). The Mn3O4 derived from sucrose (Mn3O4–S), citric acid (Mn3O4–C) and maleic acid (Mn3O4–M) exhibits inferior OER performance compared to Mn2O3 and followed the order: Mn2O3–U > Mn2O3–G > Mn3O4–S > Mn3O4–C > Mn3O4–M. The findings of the results collectively suggest that the fuel alters the surface structure and crystallization process, with further impacts the electrocatalytic performance.

Graphical abstract

Fuels used in the synthesis step altered the crystallization kinetic and surface structural features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data and code availability

Not applicable.

References

  1. Guan D, Wang B, Zhang J et al (2023) Hydrogen society: from present to future. Energy Environ Sci 16:4926–4943. https://doi.org/10.1039/D3EE02695G

    Article  Google Scholar 

  2. Guan D, Xu H, Zhang Q et al (2023) Identifying a universal activity descriptor and a unifying mechanism concept on perovskite oxides for green hydrogen production. Adva Mater 35:2305074. https://doi.org/10.1002/adma.202305074

    Article  CAS  Google Scholar 

  3. Wang J, Xin S, Xiao Y et al (2022) Manipulating the water dissociation electrocatalytic sites of bimetallic nickel-based alloys for highly efficient alkaline hydrogen evolution. Angew Chemie Int Ed 61:e202202518. https://doi.org/10.1002/anie.202202518

    Article  CAS  Google Scholar 

  4. Jiao Y, Zheng Y, Jaroniec M, Qiao SZ (2015) Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions. Chem Soc Rev 44:2060–2080. https://doi.org/10.1039/C4CS00470A

    Article  CAS  PubMed  Google Scholar 

  5. Plevová M, Hnát J, Bouzek K (2021) Electrocatalysts for the oxygen evolution reaction in alkaline and neutral media. A comparative review. J Power Sources 507:230072. https://doi.org/10.1016/j.jpowsour.2021.230072

    Article  CAS  Google Scholar 

  6. Wang S, Lu A, Zhong C-J (2021) Hydrogen production from water electrolysis: role of catalysts. Nano Converg 8:4. https://doi.org/10.1186/s40580-021-00254-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Song F, Bai L, Moysiadou A et al (2018) Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J Am Chem Soc 140:7748–7759. https://doi.org/10.1021/jacs.8b04546

    Article  CAS  PubMed  Google Scholar 

  8. Benedet M, Gallo A, Maccato C et al (2023) controllable anchoring of graphitic carbon nitride on MnO2 nanoarchitectures for oxygen evolution electrocatalysis. ACS Appl MaterInterfaces 15:47368–47380. https://doi.org/10.1021/acsami.3c09363

    Article  CAS  Google Scholar 

  9. Nagajyothi PC, Ramaraghavulu R, Munirathnam K, Yoo K, Shim J (2021) One-pot hydrothermal synthesis: enhanced MOR and OER performance using low-cost Mn3O4 electrocatalyst. Int J Hydrogen Energy 46:13946–13951. https://doi.org/10.1016/j.ijhydene.2020.11.147

    Article  CAS  Google Scholar 

  10. Mattelaer F, Bosserez T, Rongé J, Martens JA, Dendooven J, Detavernier C (2016) Manganese oxide films with controlled oxidation state for water splitting devices through a combination of atomic layer deposition and post-deposition annealing. RSC Advances 6:98337–98343. https://doi.org/10.1039/C6RA19188F

    Article  CAS  Google Scholar 

  11. Bigiani L, Gasparotto A, Maccato C et al (2020) Dual Improvement of β-MnO2 oxygen evolution electrocatalysts via combined substrate control and surface engineering. ChemCatChem 12:5984–5992. https://doi.org/10.1002/cctc.202000999

    Article  CAS  Google Scholar 

  12. Bigiani L, Gasparotto A, Andreu T et al (2021) Au–manganese oxide nanostructures by a plasma-assisted process as electrocatalysts for oxygen evolution: a chemico-physical investigation. Adv Sustain Syst 5:2000177. https://doi.org/10.1002/adsu.202000177

    Article  CAS  Google Scholar 

  13. Kuo C-H, Mosa IM, Thanneeru S et al (2015) Facet-dependent catalytic activity of MnO electrocatalysts for oxygen reduction and oxygen evolution reactions. Chem Commun 51:5951-5954. https://doi.org/10.1039/C5CC01152C

    Article  CAS  Google Scholar 

  14. Plate P, Höhn C, Bloeck U et al (2021) On the origin of the OER activity of ultrathin manganese oxide films. ACS Appl Mater Interfaces 13:2428-2436. https://doi.org/10.1021/acsami.0c15977

    Article  CAS  PubMed  Google Scholar 

  15. Bigiani L, Barreca D, Gasparotto A et al (2021) Selective anodes for seawater splitting via functionalization of manganese oxides by a plasma-assisted process. Appl Catal B: Environ 284:119684. https://doi.org/10.1016/j.apcatb.2020.119684

    Article  CAS  Google Scholar 

  16. Su H-Y, Gorlin Y, Man IC et al (2012) Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis. Phys Chem Chem Phys 14:14010–14022. https://doi.org/10.1039/C2CP40841D

    Article  CAS  PubMed  Google Scholar 

  17. Radinger H, Connor P, Stark R, Jaegermann W, Kaiser B (2021) manganese oxide as an inorganic catalyst for the oxygen evolution reaction studied by X-ray photoelectron and operando Raman spectroscopy. ChemCatChem 13:1175–1185. https://doi.org/10.1002/cctc.202001756

    Article  CAS  Google Scholar 

  18. Tian L, Zhai X, Wang X, Li J, Li Z (2020) Advances in manganese-based oxides for oxygen evolution reaction. Journal of Mater Chem A 8:14400–14414. https://doi.org/10.1039/D0TA05116K

    Article  CAS  Google Scholar 

  19. Kunchala RK, Pushpendra R Kalia, Naidu BS (2021) Irregularly shaped Mn2O3 nanostructures with high surface area for water oxidation. ACS Appl Nano Mater 4:396–405. https://doi.org/10.1021/acsanm.0c02747

    Article  CAS  Google Scholar 

  20. Ramírez A, Hillebrand P, Stellmach D, May MM, Bogdanoff P, Fiechter S (2014) Evaluation of MnOx, Mn2O3, and Mn3O4 electrodeposited films for the oxygen evolution reaction of water. J Phys Chem C 118:14073–14081. https://doi.org/10.1021/jp500939d

    Article  CAS  Google Scholar 

  21. Wang Y, Hu T, Chen Y, Yuan H, Qiao Y (2020) Crystal facet-dependent activity of α-Mn2O3 for oxygen reduction and oxygen evolution reactions. Int J Hydrogen Energy 45:22744–22751. https://doi.org/10.1016/j.ijhydene.2020.06.085

    Article  CAS  Google Scholar 

  22. Cheng L, Men Y, Wang J et al (2017) Crystal facet-dependent reactivity of α-Mn2O3 microcrystalline catalyst for soot combustion. Appl Catal B: Environ 204:374–384. https://doi.org/10.1016/j.apcatb.2016.11.041

    Article  CAS  Google Scholar 

  23. Liu N, Wu X, Yin Y et al (2020) Constructing the efficient ion diffusion pathway by introducing oxygen defects in Mn2O3 for high-performance aqueous zinc-ion batteries. ACS Appl Mater Interfaces 12:28199–28205. https://doi.org/10.1021/acsami.0c05968

    Article  CAS  PubMed  Google Scholar 

  24. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe. Co and Ni. Appl Surf Sci 257:2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  CAS  Google Scholar 

  25. Ilton ES, Post JE, Heaney PJ, Ling FT, Kerisit SN (2016) XPS determination of Mn oxidation states in Mn(hydr) oxides. Appl Surf Sci 366:475–485. https://doi.org/10.1016/j.apsusc.2015.12.159

    Article  CAS  Google Scholar 

  26. Chowde Gowda C, Mathur A, Parui A et al (2022) Understanding the electrocatalysis OER and ORR activity of ultrathin spinel Mn3O4. J Ind Eng Chem 113:153–160. https://doi.org/10.1016/j.jiec.2022.05.024

    Article  CAS  Google Scholar 

  27. Hazarika KK, Goswami C, Saikia H, Borah BJ, Bharali P (2018) Cubic Mn2O3 nanoparticles on carbon as bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Mol Catal 451:153–160. https://doi.org/10.1016/j.mcat.2017.12.012

    Article  CAS  Google Scholar 

  28. Yoon KR, Lee GY, Jung J-W, Kim N-H, Kim SO, Kim I-D (2016) One-dimensional RuO2/Mn2O3 hollow architectures as efficient bifunctional catalysts for lithium-oxygen batteries. Nano Lett 16:2076–2083. https://doi.org/10.1021/acs.nanolett.6b00185

    Article  CAS  PubMed  Google Scholar 

  29. Tang H, Lv L, Xian H et al (2023) Interfacial electronic coupling in Mn3O4/C@FeOOH nano-octahedrals regulates intermediate adsorption for highly efficient oxygen evolution reaction. Appl Surf Sci 612:155951. https://doi.org/10.1016/j.apsusc.2022.155951

    Article  CAS  Google Scholar 

  30. Mohanty B, Senapati S, Mitra A, Bal R, Jena B (2023) Synthesis of octahedral shaped Mn3O4 and its reduced graphene oxide composite for electrocatalytic oxygen evolution reaction. Catal Today 423:113897. https://doi.org/10.1016/j.cattod.2022.09.003

    Article  CAS  Google Scholar 

  31. Liu P-P, Zheng Y-Q, Zhu H-L, Li T-T (2019) Mn2O3 hollow nanotube arrays on Ni foam as efficient supercapacitors and electrocatalysts for oxygen evolution reaction. ACS Appl Nano Mater 2:744-749. https://doi.org/10.1021/acsanm.8b01918

    Article  CAS  Google Scholar 

  32. Zhang H, Guan D, Gu Y et al (2024) Tuning synergy between nickel and iron in Ruddlesden-Popper perovskites through controllable crystal dimensionalities towards enhanced oxygen-evolving activity and stability. Carbon Energy 6:e465. https://doi.org/10.1002/cey2.465

    Article  CAS  Google Scholar 

  33. Guan D, Zhong J, Xu H et al (2022) A universal chemical-induced tensile strain tuning strategy to boost oxygen-evolving electrocatalysis on perovskite oxides. Appl Phys Rev 9:011422. https://doi.org/10.1063/5.0083059

    Article  CAS  Google Scholar 

  34. Li Z, Dou X, Zhao Y, Wu C (2016) Enhanced oxygen evolution reaction of metallic nickel phosphide nanosheets by surface modification. Inorg Chem Front 3:1021–1027. https://doi.org/10.1039/C6QI00078A

    Article  CAS  Google Scholar 

  35. Lu M, Chen D, Li R et al (2020) Hierarchical nickel cobalt sulfide nanosheet arrays supported on CuO/Cu hybrid foams as a rationally designed core–shell dendrite electrocatalyst for an efficient oxygen evolution reaction. Sustain Energy Fuels 4:4039–4045. https://doi.org/10.1039/D0SE00266F

    Article  CAS  Google Scholar 

  36. Tian Y, Cao L, Qin P (2019) Bimetal−organic framework derived high-valence-state Cu-doped Co3O4 porous nanosheet arrays for efficient oxygen evolution and water splitting. ChemCatChem 11:4420–4426. https://doi.org/10.1002/cctc.201900834

    Article  CAS  Google Scholar 

  37. Nishchith BS, Ashoka S, Bhat MP et al (2022) Reversible surface reconstruction of Na3NiCO3PO4: a battery type electrode for pseudocapacitor applications. J Power Sources 520:230903. https://doi.org/10.1016/j.jpowsour.2021.230903

    Article  CAS  Google Scholar 

  38. Ganguly A, Sharma S, Papakonstantinou P, Hamilton J (2011) Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J Phys Chem C 115:17009–17019. https://doi.org/10.1021/jp203741y

    Article  CAS  Google Scholar 

  39. Wang J, Wang J-G, Liu H, Wei C, Kang F (2019) Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. J Mater Chem A 7:13727–13735. https://doi.org/10.1039/C9TA03541A

    Article  CAS  Google Scholar 

  40. Benedet M, Gasparotto A, Rizzi GA et al (2023) XPS investigation of MnO2 deposits functionalized with graphitic carbon nitride. Surf Sci Spectra 30:024018. https://doi.org/10.1116/6.0002827

    Article  CAS  Google Scholar 

  41. Wagner T, Valbusa D, Bigiani L, Barreca D, Gasparotto A, Maccato C (2020) XPS characterization of Mn2O3 nanomaterials functionalized with Ag and SnO2. Surf Sci Spectra 27:024004. https://doi.org/10.1116/6.0000331

    Article  CAS  Google Scholar 

  42. Koleva V, Boyadzhieva T, Zhecheva E et al (2013) Precursor-based methods for low-temperature synthesis of defectless NaMnPO4 with an olivine- and maricite-type structure. CrystEngComm 15:9080–9089. https://doi.org/10.1039/C3CE41545G

    Article  CAS  Google Scholar 

  43. Wei R, Fang M, Dong G et al (2018) High-index faceted porous Co3O4 nanosheets with oxygen vacancies for highly efficient water oxidation. ACS Appl Mater Interfaces 10:7079–7086. https://doi.org/10.1021/acsami.7b18208

    Article  CAS  PubMed  Google Scholar 

  44. Ding SL, Wu R, Fu JB et al (2015) Exchange bias of CoO1− δ/(NiFe, Fe) system with blocking temperature beyond Néel temperature of bulk CoO. Appl Phys Lett 107:172404. https://doi.org/10.1063/1.4934921

    Article  CAS  Google Scholar 

  45. Toupin M, Brousse T, Bélanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190. https://doi.org/10.1021/cm049649j

    Article  CAS  Google Scholar 

  46. Tong X, Xia X, Guo C et al (2015) Efficient oxygen reduction reaction using mesoporous Ni-doped Co3O4 nanowire array electrocatalysts. J Mater Chem A 3:18372–18379. https://doi.org/10.1039/C5TA04593B

    Article  CAS  Google Scholar 

  47. Li MW, Fu MH, Cao Y et al (2019) Mn3O4@C nanoparticles supported on porous carbon as bifunctional oxygen electrodes and their electrocatalytic mechanism. ChemElectroChem 6:359–368. https://doi.org/10.1002/celc.201801464

    Article  CAS  Google Scholar 

  48. Speck FD, Santori PG, Jaouen F, Cherevko S (2019) Mechanisms of manganese oxide electrocatalysts degradation during oxygen reduction and oxygen evolution reactions. J Phys Chem C 123:25267–25277. https://doi.org/10.1021/acs.jpcc.9b07751

    Article  CAS  Google Scholar 

  49. Kar P, Sardar S, Ghosh S et al (2015) Nano surface engineering of Mn2O3 for potential light-harvesting application. J Mater Chem C 3:8200–8211. https://doi.org/10.1039/C5TC01475A

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the management of REVA University for providing seed money grant bearing file number RU/R&D/SEED/CHE/2023/16 to carry out this research work.

Author information

Authors and Affiliations

Authors

Contributions

Sagar P: Experimental design, Carrying out measurements Ashoka S: Manuscript composition Srinivasa N: Conception Yogesh K: Carrying out measurements Girish Kumar S: Manuscript Revision.

Corresponding author

Correspondence to S. Ashoka.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Ethical approval

Not applicable.

Additional information

Handling Editor: Andréa de Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3995 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagar, P., Ashoka, S., Srinivasa, N. et al. Fuel assisted crystal structure tailoring of manganese oxides and their surface reactivity towards oxygen evolution reaction. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09908-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-09908-7

Navigation