Skip to main content
Log in

AIE-based UiO-66/TiO2:fast response toluene detection and photocatalytic degradation

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

At present, it is difficult to realize an effective integration of both the detection and removal of volatile organic compounds (VOCs). Herein, we propose a two-step strategy to design a new type of heterostructure photocatalyst UiO-66-TBPE/TiO2 with the desired interfacial compatibility based on aggregation-induced luminescence, which possesses excellent sensing and photocatalytic degradation performance for toluene. This strategy effectively overcomes the aggregation-caused quenching (ACQ) effect and the transmission blocking of photogenerated electrons, and improves the fluorescence efficiency and electron–hole separation efficiency. In addition, the desired interface compatibility and hollow structure of UiO-66-TBPE/TiO2 accelerate the adsorption and transfer of targets and shorten the path of “adsorption–sensing–catalysis.” Thence, UiO-66-TBPE/TiO2 exhibits efficient and fast fluorescence sensing and the deeper sensing mechanism of toluene has explained by a combination of modern characterization techniques and computer simulation. More interestingly, a linear relationship is observed between the Δ fluorescence intensity in sensing performance and the degradation rate in degradation performance, providing a pathway to replace the complex method of degradation by simple fluorescence.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kadosaki M, Terasawa T, Tanino K et al (1999) Exploration of highly sensitive oxide semiconductor materials to indoor-air pollutants[J]. Trans Inst Electr Eng Japan 119:383–389

    Google Scholar 

  2. Molhave L (1989) The sick buildings and other buildings with indoor climate problems[J]. Environment 15:65–74

    Google Scholar 

  3. Mahan G, Sajjad J, Ti Hamed, Nishat T et al (2022) Selective detection of VOCs using microfluidic gas sensor with embedded cylindrical microfeatures coated with graphene oxide[J]. J Hazard Mater 424:127566

    Article  Google Scholar 

  4. Paska Y, Stelzner T, Christiansen S et al (2011) Enhanced sensing of nonpolar volatile organic compounds by silicon nanowire field effect transistors[J]. ACS Nano 5:5620–5626

    Article  CAS  PubMed  Google Scholar 

  5. Wang C, Zhu L, Zhao F et al (2021) The chemistry of gaseous benzene degradation using non-thermal plasma[J]. Environ Sci Pollut Res. 28:1565–1573

    Article  CAS  Google Scholar 

  6. Park DH, Heo JM et al (2018) Smartphone-based VOC sensor using colorimetric polydiacetylenes[J]. Acs Appl Mater Interfaces 10:5014–5021

    Article  CAS  PubMed  Google Scholar 

  7. Zhang G, Liu Y, Zheng S et al (2019) Adsorption of volatile organic compounds onto natural porous minerals[J]. J Hazard Mater 364:317–324

    Article  CAS  PubMed  Google Scholar 

  8. Wang D, Li Z, Zhou J et al (2018) Simultaneous detection and removal of formaldehyde at room temperature: Janus Au@ZnO@ZIF-8 nanoparticles[J]. Nano-Micro Lett 10(1):4

    Article  Google Scholar 

  9. Alipour N, Andersson RL, Olsson RT et al (2016) VOC-induced flexing of single and multilayer polyethylene films as gas sensors[J]. Acs Appl Mater Interfaces 8:9946–9953

    Article  CAS  PubMed  Google Scholar 

  10. Li YZ, Wang GD, Shi WJ et al (2020) Efficient C2Hn hydrocarbons and VOC adsorption and separation in an MOF with lewis basic and acidic decorated active sites[J]. ACS Appl Mater Interfaces 12:41785–41793

    Article  CAS  PubMed  Google Scholar 

  11. Jiao L, Wang Y, Jiang HL et al (2018) Metal-organic frameworks as platforms for catalytic applications[J]. Adv Mater 30:17036631–170366323

    Article  Google Scholar 

  12. Roessner U (2010) Simultaneous analysis of metabolites in potato tuber by gas chromatography–mass spectrometry[J]. Plant J Cell Mol Biol 23(1):131–142

    Article  Google Scholar 

  13. Lisec J, Schauer N, Kopka J et al (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants[J]. Nat Protoc 1(1):387–96

    Article  CAS  PubMed  Google Scholar 

  14. Patterson BW, Zhang XJ, Chen Y et al (1997) Measurement of very low stable isotope enrichments by gas chromatography/mass spectrometry: application to measurement of muscle protein synthesis[J]. Metab Clin Exp 46(8):943–8

    Article  CAS  PubMed  Google Scholar 

  15. Zhirkov AA, Yagov VV, Antonenko AA et al (2020) Determination of the mineral composition of human saliva by microplasma atomic emission spectroscopy[J]. J Anal Chem 75(1):63–66

    Article  CAS  Google Scholar 

  16. Yadav VK, Gnanamoorthy G, Cabral-Pinto MM et al (2021) Variations and similarities in structural, chemical and elemental properties on the ashes derived from the coal due to their combustion in open and controlled manner[J]. Environ Sci Pollut Res 28:32609–32625

    Article  CAS  Google Scholar 

  17. Tanabe CK, Nelson J, Boulton RB et al (2020) The use of macro, micro, and trace elemental profiles to differentiate commercial single vineyard pinot noir wines at a sub-regional level[J]. Molecules 25(11):2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fernandes EDO et al (2016) A systematic review of evidence and implications of spatial and seasonal variations of volatile organic compounds (VOC) in indoor human environments[J]. J Toxicol Environ Health Part B Crit Rev 19(2):47–64

    Article  Google Scholar 

  19. Burtch NC, Heinen J, Bennett TD et al (2018) Mechanical properties in metal-organic frameworks: emerging opportunities and challenges for device functionality and technological applications[J]. Adv Mater 30:1704124–1704124

    Article  Google Scholar 

  20. Jafar A, Abdollah JS, Masoud H et al (2022) State of the art on the ultrasonic-assisted removal of environmental pollutants using metal-organic frameworks[J]. J Hazard Mater 424:127558

    Article  Google Scholar 

  21. Tung TT, Tran MT, Feller JF, Castro M, Van Ngo T, Hassan K, Losic D (2020) Graphene and metal organic frameworks (MOFs) hybridization for tunable chemoresistive sensors for detection of volatile organic compounds (VOCs) biomarkers—ScienceDirect[J]. Carbon 159:333–344

    Article  CAS  Google Scholar 

  22. Zhang Y, Yuan S, Day G et al (2017) Luminescent sensors based on metal-organic frameworks[J]. Coord Chem Rev 354:28–45

    Article  Google Scholar 

  23. Gui B, Yu N, Meng Y et al (2017) Immobilization of AIE gens into metal-organic frameworks: ligand design, emission behavior, and applications[J]. J Polym Sci, Part A: Polym Chem 55:1809–1817

    Article  CAS  Google Scholar 

  24. Mei J, Leung NLC, Kwok RTK et al (2015) Aggregation-induced emission: together we shine united we soar![J]. Chem Rev 115:11718–11940

    Article  CAS  PubMed  Google Scholar 

  25. Yang F, Ma J, Zhu Q et al (2021) Fluorescent and mechanical properties of UiO-66/PA composite membrane[J]. Colloids Surf, A 3:127083

    Article  Google Scholar 

  26. Dong Y, Lam JWY, Qin A et al (2006) Aggregation-induced emission[C]//organic light emitting materials & devices X. International Society for Optics and Photonics

  27. Shustova NB, Mccarthy BD, Dinca M (2011) Turn-on fluorescence in tetraphenylethylene-based metal-organic frameworks: An alternative to aggregation-induced emission[J]. J Am Chem Soc 133:20126–20129

    Article  CAS  PubMed  Google Scholar 

  28. Wang FM, Liu W, Teat SJ et al (2016) Chromophore-immobilized luminescent metal-organic frameworks as potential lighting phosphors and chemical sensors[J]. Chem Commun 52:10249

    Article  CAS  Google Scholar 

  29. Dang S, Wang T, Yi F et al (2015) A nanoscale multiresponsive luminescent sensor based on a Terbium(III) metal–organic framework[J]. Chem Asian J 10:1703–1709

    Article  CAS  PubMed  Google Scholar 

  30. Dong G, Li H, Chen V (2013) Challenges and opportunities for mixed-matrix membranes for gas separation[J]. J Mater Chem A 1:4610–4630

    Article  CAS  Google Scholar 

  31. Kou J, Sun LB (2018) Fabrication of metal-organic frameworks inside silica nanopores with significantly enhanced hydrostability and catalytic activity[J]. Acs Appll Mater Interfaces 10:12051–12059

    Article  CAS  Google Scholar 

  32. Vitillo JG, Bordiga S (2017) Increasing the stability of Mg2(dobpdc) metal–organic framework in air through solvent removal[J]. Mater Chem Front 1:444–448

    Article  CAS  Google Scholar 

  33. Shu Y, Ye Q, Dai T et al (2021) Encapsulation of luminescent guests to construct Luminescent metal-organic frameworks for chemical sensing[J]. ACS Sens 6:641–658

    Article  CAS  PubMed  Google Scholar 

  34. Peng H, Rw A, Zhu G et al (2021) Improved interface compatibility of hollow H-Zr0.1Ti0.9O2 with UiO-66-NH2 via Zr–Ti bidirectional penetration to boost visible photocatalytic activity for acetaldehyde degradation under high humidity[J]. Appl Catal B: Environ 296:120371

    Article  Google Scholar 

  35. Ak A, Sp A, Dbb C et al (2021) Novel Ag decorated, BiOCl surface doped AgVO3 nanobelt ternary composite with Z-scheme homojunction-heterojunction interface for high prolific photo switching, quantum efficiency and hole mediated photocatalysis[J]. Appl Catal B 293:120224

    Article  Google Scholar 

  36. Anh NP, Kim Chi HT, Tri N et al (2018) Photoactivity of reducing graphene oxide and titanium dioxide composite for cinnamic acid degradation[J]. Mater Trans 59(7):1117–1123

    Article  CAS  Google Scholar 

  37. Sekiguchi K, Morinaga W, Sakamoto K et al (2010) Degradation of VOC gases in liquid phase by photocatalysis at the bubble interface[J]. Appl Catal B 97(1–2):190–197

    Article  CAS  Google Scholar 

  38. Dmt A, Dd B, Llc D et al (2021) Graphene-TiO2 hybrids for photocatalytic aided removal of VOCs and nitrogen oxides from outdoor environment[J]. Chem Eng J 405:126651

    Article  Google Scholar 

  39. Tao CL, Ying YM, Wang H et al (2018) Nonwoven fabric coated with a tetraphenylethene-based luminescent metal–organic framework for selective and sensitive sensing of nitrobenzene and ammonia[J]. J Mater Chem C 6(45):12371–12376

    Article  CAS  Google Scholar 

  40. Zou L, Luo Y, Hooper M et al (2006) Removal of VOCs by photocatalysis process using adsorption enhanced TiO2–SiO2 catalyst[J]. Chem Eng Process 45(11):959–964

    Article  CAS  Google Scholar 

  41. Wolowiec M, Muir B, Zieba K et al (2017) Experimental study on the removal of VOCs and PAHs by zeolites and surfactant-modified zeolites[J]. Energy Fuels 31(8):8803–8812

    Article  CAS  Google Scholar 

  42. Su Y, Yu J, Li Y et al (2018) Versatile bimetallic lanthanide metal-organic frameworks for tunable emission and efficient fluorescence sensing[J]. Commun Chem 1(1):12

    Article  Google Scholar 

  43. Chen CX, Wei Z, Jiang JJ et al (2016) Precise modulation of the breathing behavior and pore surface in Zr-MOFs by reversible post-synthetic variable-spacer installation to fine-tune the expansion magnitude and sorption properties[J]. Angewandte Chemie 128(34):10086–10090

    Article  Google Scholar 

  44. Liu X, Demir NK, Wu Z et al (2015) Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination[J]. J Am Chem Soc 137(22):6999–7002

    Article  CAS  PubMed  Google Scholar 

  45. Zhang G, Peyravi A, Hashisho Z et al (2020) Integrated adsorption and photocatalytic degradation of VOCs using a TiO2/diatomite composite: effects of relative humidity and reaction atmosphere[J]. Catal Sci Technol 10(8):2378–2388

    Article  Google Scholar 

  46. Si C, Wfa C, Hw C et al (2021) Synergistic degradation of NO and ethyl acetate by plasma activated “pseudo photocatalysis” on Ce/ZnGa2O4/NH2 -UiO-66 catalyst: Restrictive relation and reaction pathways exploration[J]. Chem Eng J 421:129725

    Article  Google Scholar 

  47. Plugaru R, Cremades A, Piqueras J (2020) The effect of annealing in different atmospheres on the luminescence of polycrystalline TiO2[J]. J Phys: Condens Matter 16(2):S261–S268

    Google Scholar 

  48. Zhang F, Xie C, Xiao X (2020) pH-responsive release of TiO2 nanotube arrays/mesoporous silica composite based on tannic acid-Fe(III) complex coating[J]. Micro Nano Lett 15(12):797–801

    Article  CAS  Google Scholar 

  49. Ma Y, Tang Q, Sun WY et al (2020) Assembling ultrafine TiO2 nanoparticles on UiO-66 octahedrons to promote selective photocatalytic conversion of CO2 to CH4 at a low concentration[J]. Appl Catal B 270:118856

    Article  CAS  Google Scholar 

  50. Liu Y, Xu Y, Zhong D, Zhong N et al (2020) Visible-light photocatalytic fuel cell with BiVO 4 /UiO-66/TiO2 /Ti photoanode efficient degradation of Rhodamine B and stable generation of electricity[J].Chemical Physics 542:111053 https://doi.org/10.1016/j.chemphys.2020

    Article  Google Scholar 

  51. Zhang J, Guo Z, Yang Z et al (2020) TiO2@UiO Composites with efficient adsorption and photocatalytic oxidation of VOCs: investigation of synergistic effect and reaction mechanism[J]. ChemCatChem 13:581–591

    Article  Google Scholar 

  52. Khan S, Al-Shahry M Jr, Ingler WB (2002) Efficient photochemical water splitting by a chemically modified n-TiO2[J]. Science 297(5590):2243–2245

    Article  CAS  PubMed  Google Scholar 

  53. Park IS, Chung KH, Kim SC et al (2021) Photocatalytic degradation of 1,4-dioxane and hydrogen production using liquid phase plasma on N- and Ni- codoped TiO2 photocatalyst[J]. Mater Lett 283:128751

    Article  CAS  Google Scholar 

  54. Nascimento LE, Neto N, Ramalho O et al (2020) Photocatalytic properties of the CeO2-xTiO2 and TiO2-xCeO2 (x=10, 30, and 50 mol%) heterostructures obtained by a MAH[J]. Int J Appl Ceram Technol 17:2376–2385

    Article  CAS  Google Scholar 

  55. Zhu BL, Xie CS, Wang WY (2004) Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO2[J]. Mater Lett 58(5):624–629

    Article  CAS  Google Scholar 

  56. Ao CH, Lee SC, Yu JZ et al (2004) Photodegradation of formaldehyde by photocatalyst TiO2: effects on the presences of NO, SO2 and VOCs[J]. Appl Catal B 54(1):41–50

    Article  CAS  Google Scholar 

  57. Kumar RS, Govindan K, Ramakrishnan S et al (2021) Fe3O4 nanorods decorated on polypyrrole/reduced graphene oxide for electrochemical detection of dopamine and photocatalytic degradation of acetaminophen[J]. Appl Surf Sci 556:149765. https://doi.org/10.1016/j.apsusc.2021.149765

    Article  CAS  Google Scholar 

  58. Tamilarasi S, Kumar RS, Cho KB et al (2023) High-performance electrochemical detection of glucose in human blood serum using a hierarchical NiO2 nanostructure supported on phosphorus doped graphene[J]. Mater Today Chem 34:101765

    Article  CAS  Google Scholar 

  59. Chen C, Bai H, Chang SM et al (2007) Preparation of N-doped TiO2 photocatalyst by atmospheric pressure plasma process for VOCs decomposition under UV and visible light sources[J]. J Nanopart Res 9(3):365–375

    Article  CAS  Google Scholar 

  60. Fujimoto TM, Ponczek M, Rochetto UL et al (2017) Photocatalytic oxidation of selected gas-phase VOCs using UV light, TiO2, and TiO2/Pd[J]. Environ Sci Pollut Res Int 24(7):6390–6396

    Article  CAS  PubMed  Google Scholar 

  61. Chawengkijwanich C, Pokhum C, Srisitthiratkul C et al (2019) Fabrication of water-based TiO2-coated pleated synthetic fiber toward photocatalytic oxidation of VOCs and CO for indoor air quality improvement[J]. J Environ Eng 145(6):04019030

    Article  CAS  Google Scholar 

  62. Rioult M , Datta S , Stanescu D ,et al.Tailoring the photocurrent in BaTiO3/Nb:SrTiO3 photoanodes by controlled ferroelectric polarization[J].Applied Physics Letters, 2015, 107(10):37.

  63. Datta S, Rioult M, Stanescu D, Magnan H, Barbier A (2016) Manipulating the ferroelectric polarization state of BaTiO3 thin films[J]. Thin Solid Films 607:7–13

    Article  CAS  Google Scholar 

  64. Yu Y, Zheng L et al (2012) Adsorption behavior of toluene on modified 1X molecular sieves[J]. J Air Waste Manag Assoc 62(10):1227–1232. https://doi.org/10.1080/10962247.2012.702186

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 52073164) and the Special Scientific Research Program Founded by Shaanxi Provincial Education Department (No. 19JK0150). Thanks to the computer software simulation provided by Northwestern Polytechnical University.

Author information

Authors and Affiliations

Authors

Contributions

Fan Yang was responsible for methodology, validation, formal analysis, investigation, writing—original data curation and visualization. JianZhong Ma contributed to reviewing and editing, project administration, funding acquisition and resources. Qian Zhu and John Wang were involved in reviewing and editing.

Corresponding authors

Correspondence to Jianzhong Ma or Qian Zhu.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3127 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Ma, J., Zhu, Q. et al. AIE-based UiO-66/TiO2:fast response toluene detection and photocatalytic degradation. J Mater Sci 59, 12384–12399 (2024). https://doi.org/10.1007/s10853-024-09901-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09901-0

Navigation