Skip to main content
Log in

Recent progress of advanced separators for Li-ion batteries

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The current state-of-the-art lithium-ion batteries (LIBs) face significant challenges in terms of low energy density, limited durability, and severe safety concerns, which cannot be solved solely by enhancing the performance of electrodes. Separator, a vital component in LIBs, impacts the electrochemical properties and safety of the battery without association with electrochemical reactions. The development of innovative separators to overcome these countered bottlenecks of LIBs is necessitated to rationally design more sustainable and reliable energy storage systems. Therefore, exploitation of advanced separators has emerged as an appealing research trend in laboratory and industry. Here, we review the recent progress made in advanced separators for LIBs, which can be delved into three types: 1. modified polymeric separators; 2. composite separators; and 3. inorganic separators. In addition, we discuss the future challenges and development directions of the advanced separators for next-generation LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23

Similar content being viewed by others

References

  1. Fan E, Li L, Wang Z et al (2020) Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem Rev 120:7020

    Article  CAS  PubMed  Google Scholar 

  2. Shahjalal M, Roy PK, Shams T et al (2022) A review on second-life of Li-ion batteries: prospects, challenges, and issues. Energy 241:122881

    Article  CAS  Google Scholar 

  3. Zhang W, Yin J, Zhang P, Tang X, Ding Y (2018) Two-dimensional phosphorus carbide as a promising anode material for lithium-ion batteries. J Mater Chem A 6:12029. https://doi.org/10.1039/C8TA02995D

    Article  CAS  Google Scholar 

  4. Liu X, Jiang Y, Li K, Xu F, Zhang P, Ding Y (2019) Electrospun free-standing N-doped C@SnO2 anode paper for flexible Li-ion batteries. Mater Res Bull 109:41. https://doi.org/10.1016/j.materresbull.2018.09.023

    Article  CAS  Google Scholar 

  5. Xiao C, Tang X, Peng J, Ding Y (2021) Graphene-like BSi as a promising anode material for Li- and Mg-ion batteries: a first principle study. Appl Surf Sci 563:150278. https://doi.org/10.1016/j.apsusc.2021.150278

    Article  CAS  Google Scholar 

  6. Richa K, Babbitt CW, Gaustad G, Wang X (2014) A future perspective on lithium-ion battery waste flows from electric vehicles. Resour, Conserv Recycl 83:63. https://doi.org/10.1016/j.resconrec.2013.11.008

    Article  Google Scholar 

  7. Raijmakers LHJ, Danilov DL, Eichel RA, Notten PHL (2019) A review on various temperature-indication methods for Li-ion batteries. Appl Energy 240:918. https://doi.org/10.1016/j.apenergy.2019.02.078

    Article  CAS  Google Scholar 

  8. Siyal SH, Javed MS, Jatoi AH et al (2020) In situ curing technology for dual ceramic composed by organic–inorganic functional polymer gel electrolyte for dendritic-free and robust lithium–metal batteries. Adv Mater Interfaces 7:2000830

    Article  CAS  Google Scholar 

  9. Chen XC, Zhang Y, Merrill LC et al (2021) Gel composite electrolyte–an effective way to utilize ceramic fillers in lithium batteries. J Mater Chem A 9:6555

    Article  CAS  Google Scholar 

  10. Yu X, Manthiram A (2021) A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Mater 34:282

    Article  Google Scholar 

  11. Li Y, Li Q, Tan Z (2019) A review of electrospun nanofiber-based separators for rechargeable lithium-ion batteries. J of Power Sour 443:227262. https://doi.org/10.1016/j.jpowsour.2019.227262

    Article  CAS  Google Scholar 

  12. Li J, Jia H, Ma S et al (2023) Separator design for high-performance supercapacitors: requirements, challenges, strategies, and prospects. ACS Energy Lett 8:56. https://doi.org/10.1021/acsenergylett.2c01853

    Article  CAS  Google Scholar 

  13. Xing J, Bliznakov S, Bonville L, Oljaca M, Maric R (2022) A Review of nonaqueous electrolytes, binders, and separators for lithium-ion batteries. Electrochem Energy Rev 5:14. https://doi.org/10.1007/s41918-022-00131-z

    Article  CAS  Google Scholar 

  14. Pezeshki Z (2020) Classification, modeling, and requirements for separators in rechargeable batteries. Wiley, Hoboken, pp 265–314

  15. Liu F, Chuan X (2021) Recent developments in natural mineral-based separators for lithium-ion batteries. RSC Adv 11:16633. https://doi.org/10.1039/D1RA02845F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heidari AA, Mahdavi H (2020) Recent development of polyolefin-based microporous separators for Li−Ion batteries: a review. The Chem Record 20:570. https://doi.org/10.1002/tcr.201900054

    Article  CAS  Google Scholar 

  17. Waqas M, Ali S, Feng C, Chen D, Han J, He W (2019) Recent development in separators for high-temperature lithium-ion batteries. Small 15:1901689. https://doi.org/10.1002/smll.201901689

    Article  CAS  Google Scholar 

  18. Zhong S, Yuan B, Guang Z et al (2021) Recent progress in thin separators for upgraded lithium ion batteries. Energy Storage Mater 41:805. https://doi.org/10.1016/j.ensm.2021.07.028

    Article  Google Scholar 

  19. Wang Y, Li QM, Xing Y (2020) Porosity variation of lithium-ion battery separators under uniaxial tension. Int J Mech Sci 174:105496. https://doi.org/10.1016/j.ijmecsci.2020.105496

    Article  Google Scholar 

  20. Wu Y, Yang F, Cao Y et al (2021) Investigation on cavitation behavior of ultrahigh molecular weight polyethylene during stretching in wet process and dry process. Polymer 230:124081. https://doi.org/10.1016/j.polymer.2021.124081

    Article  CAS  Google Scholar 

  21. Chen H-L, Jiao X-N, Zhou J-T (2016) The research progress of Li-ion battery separators with inorganic oxide nanoparticles by electrospinning: a mini review. Funct Mater Lett 09:1630003. https://doi.org/10.1142/s1793604716300036

    Article  CAS  Google Scholar 

  22. Deng C, Jiang Y, Fan Z et al (2019) Sepiolite-based separator for advanced Li-ion batteries. Appl Surface Sci 484:446. https://doi.org/10.1016/j.apsusc.2019.04.141

    Article  CAS  Google Scholar 

  23. Francis CFJ, Kyratzis IL, Best AS (2020) Lithium-Ion battery separators for ionic-liquid electrolytes: a review. Adv Mater 32:1904205. https://doi.org/10.1002/adma.201904205

    Article  CAS  Google Scholar 

  24. Liu Q, Jiang W, Lu W et al (2020) Anisotropic semi-aligned PAN@PVdF-HFP separator for Li-ion batteries. Nanotechnology 31:435701. https://doi.org/10.1088/1361-6528/aba303

    Article  CAS  PubMed  Google Scholar 

  25. Tian Q, Liu Q, Song K et al (2021) Fabrication of aligned PI/GO nanofibers for battery separators. Fibers Polym 22:30. https://doi.org/10.1007/s12221-021-0103-1

    Article  CAS  Google Scholar 

  26. An M-Y, Kim H-T, Chang D-R (2014) Multilayered separator based on porous polyethylene layer, Al2O3 layer, and electro-spun PVdF nanofiber layer for lithium batteries. J Solid State Electrochem 18:1807. https://doi.org/10.1007/s10008-014-2412-4

    Article  CAS  Google Scholar 

  27. Liu J, Liu Y, Yang W, Ren Q, Li F, Huang Z (2018) Lithium ion battery separator with high performance and high safety enabled by tri-layered SiO2@PI/m-PE/SiO2@PI nanofiber composite membrane. J Power Sour 396:265. https://doi.org/10.1016/j.jpowsour.2018.06.008

    Article  CAS  Google Scholar 

  28. Jiang W, Han Y, Ding Y (2022) Sepiolite and ZIF-67 co-modified PAN/PVdF-HFP nanofiber separators for advanced Li-ion batteries. Nanotechnology 33:425601. https://doi.org/10.1088/1361-6528/ac8061

    Article  CAS  Google Scholar 

  29. Liu X, Song K, Lu C et al (2018) Electrospun PU@GO separators for advanced lithium ion batteries. J Membrane Sci 555:1. https://doi.org/10.1016/j.memsci.2018.03.027

    Article  CAS  Google Scholar 

  30. Huang Y, Wang Y, Fu Y (2023) A thermoregulating separator based on black phosphorus/MOFs heterostructure for thermo-stable lithium-sulfur batteries. Chem Eng J 454:140250. https://doi.org/10.1016/j.cej.2022.140250

    Article  CAS  Google Scholar 

  31. Li L, Peng S, Lee JKY, Ji D, Srinivasan M, Ramakrishna S (2017) Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 39:111. https://doi.org/10.1016/j.nanoen.2017.06.050

    Article  CAS  Google Scholar 

  32. Zhang Y, Wang Z, Xiang H, Shi P, Wang H (2016) A thin inorganic composite separator for lithium-ion batteries. J Membrane Sci 509:19. https://doi.org/10.1016/j.memsci.2016.02.047

    Article  CAS  Google Scholar 

  33. Xiao W, Zhang K, Liu J, Yan C (2017) Preparation of poly(vinyl alcohol)-based separator with pore-forming additive for lithium-ion batteries. J Mater Sci: Mater Electron 28:17516. https://doi.org/10.1007/s10854-017-7687-7

    Article  CAS  Google Scholar 

  34. Barbosa JC, Reizabal A, Correia DM et al (2020) Lithium-ion battery separator membranes based on poly(L-lactic acid) biopolymer. Mater Today Energy 18:100494. https://doi.org/10.1016/j.mtener.2020.100494

    Article  CAS  Google Scholar 

  35. Shin M, Song W-J, Son HB et al (2018) Highly stretchable separator membrane for deformable energy-storage devices. Adv Energy Mater 8:1801025. https://doi.org/10.1002/aenm.201801025

    Article  CAS  Google Scholar 

  36. Xu Q, Kong Q, Liu Z et al (2014) Cellulose/polysulfonamide composite membrane as a high performance lithium-ion battery separator. ACS Sustain Chem & Eng 2:194. https://doi.org/10.1021/sc400370h

    Article  CAS  Google Scholar 

  37. Liu W, Ju J, Deng N et al (2020) Designing inorganic-organic nanofibrous composite membrane for advanced safe Li-ion capacitors. Electrochim Acta 337:135821. https://doi.org/10.1016/j.electacta.2020.135821

    Article  CAS  Google Scholar 

  38. Li Y, Long J, Liang Y, Hu J (2023) Tri-layer nonwoven separator with thermal shutdown function fabricated through a facile papermaking method for high-safety lithium-ion battery. ACS Appl Poly Mater 5:5305. https://doi.org/10.1021/acsapm.3c00709

    Article  CAS  Google Scholar 

  39. Huang Z, Chen Y, Han Q et al (2022) Vapor-induced phase inversion of poly (m-phenylene isophthalamide) modified polyethylene separator for high-performance lithium-ion batteries. Chem Eng J 429:132429. https://doi.org/10.1016/j.cej.2021.132429

    Article  CAS  Google Scholar 

  40. de Moraes ACM, Hyun WJ, Luu NS, Lim J-M, Park K-Y, Hersam MC (2020) Phase-inversion polymer composite separators based on hexagonal boron nitride nanosheets for high-temperature lithium-ion batteries. ACS Appl Mater & Interfaces 12:8107. https://doi.org/10.1021/acsami.9b18134

    Article  CAS  Google Scholar 

  41. Ma X, Kolla P, Yang R et al (2017) Electrospun polyacrylonitrile nanofibrous membranes with varied fiber diameters and different membrane porosities as lithium-ion battery separators. Electrochim Acta 236:417. https://doi.org/10.1016/j.electacta.2017.03.205

    Article  CAS  Google Scholar 

  42. Yanilmaz M, Lu Y, Li Y, Zhang X (2015) SiO2/polyacrylonitrile membranes via centrifugal spinning as a separator for Li-ion batteries. J Power Sour 273:1114. https://doi.org/10.1016/j.jpowsour.2014.10.015

    Article  CAS  Google Scholar 

  43. Barbosa JC, Dias JP, Lanceros-Méndez S, Costa CM (2018) Recent advances in poly (vinylidene fluoride) and its copolymers for lithium-ion battery separators. Membranes 8:45

    Article  PubMed  PubMed Central  Google Scholar 

  44. Costa C, Ribelles JG, Lanceros-Méndez S, Appetecchi G, Scrosati B (2014) Poly (vinylidene fluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems. J Power Sour 245:779

    Article  CAS  Google Scholar 

  45. Hao J, Lei G, Li Z, Wu L, Xiao Q, Wang L (2013) A novel polyethylene terephthalate nonwoven separator based on electrospinning technique for lithium ion battery. J Membr Sci 428:11

    Article  CAS  Google Scholar 

  46. Zhu C, Nagaishi T, Shi J et al (2017) Enhanced wettability and thermal stability of a novel polyethylene terephthalate-based poly (vinylidene fluoride) nanofiber hybrid membrane for the separator of lithium-ion batteries. ACS Appl Mater & Interfaces 9:26400

    Article  CAS  Google Scholar 

  47. Li M, Zhang Z, Yin Y et al (2019) Novel polyimide separator prepared with two porogens for safe lithium-ion batteries. ACS Appl Mater & interfaces 12:3610

    Article  Google Scholar 

  48. Lu Z, Sui F, Miao Y-E et al (2021) Polyimide separators for rechargeable batteries. J Energy Chem 58:170

    Article  CAS  Google Scholar 

  49. Fu Q, Lin G, Chen X et al (2018) Mechanically reinforced PVdF/PMMA/SiO2 composite membrane and its electrochemical properties as a separator in lithium-ion batteries. Energy Technol 6:144

    Article  CAS  Google Scholar 

  50. Luiso S, Fedkiw P (2020) Lithium-ion battery separators: recent developments and state of art. Curr Opin Electrochem 20:99

    Article  CAS  Google Scholar 

  51. Xiang Y, Zhu W, Qiu W et al (2018) SnO2 functionalized polyethylene separator with enhanced thermal stability for high performance lithium ion battery. ChemistrySelect 3:911

    Article  CAS  Google Scholar 

  52. Jeon H, Yeon D, Lee T, Park J, Ryou M-H, Lee YM (2016) A water-based Al2O3 ceramic coating for polyethylene-based microporous separators for lithium-ion batteries. J Power Sour 315:161

    Article  CAS  Google Scholar 

  53. Liu X, Song K, Lu C et al (2018) Electrospun PU@ GO separators for advanced lithium ion batteries. J Membr Sci 555:1

    Article  CAS  Google Scholar 

  54. Song K, Zhang P, Huang Y, Xu F, Ding Y (2019) Electrospun PU/PVP/GO separator for Li-ion batteries. Fibers Poly 20:961

    Article  CAS  Google Scholar 

  55. Xiao W, Zhao L, Gong Y, Liu J, Yan C (2015) Preparation and performance of poly (vinyl alcohol) porous separator for lithium-ion batteries. J Membr Sci 487:221

    Article  CAS  Google Scholar 

  56. Xiao W, Song J, Huang L, Yang Z, Qiao Q (2020) PVA-ZrO2 multilayer composite separator with enhanced electrolyte property and mechanical strength for lithium-ion batteries. Ceramics Int 46:29212

    Article  CAS  Google Scholar 

  57. Rahimpour A (2011) UV photo-grafting of hydrophilic monomers onto the surface of nano-porous PES membranes for improving surface properties. Desalination 265:93

    Article  CAS  Google Scholar 

  58. Belfer S, Fainshtain R, Purinson Y, Gilron J, Nyström M, Mänttäri M (2004) Modification of NF membrane properties by in situ redox initiated graft polymerization with hydrophilic monomers. J Membr Sci 239:55

    Article  CAS  Google Scholar 

  59. Lee J-Y, Park C-Y, Moon S-Y, Choi J-H, Chang B-J, Kim J-H (2019) Surface-attached brush-type CO2-philic poly (PEGMA)/PSf composite membranes by UV/ozone-induced graft polymerization: fabrication, characterization, and gas separation properties. J Membr Sci 589:117214

    Article  CAS  Google Scholar 

  60. Han M, Kim D-W, Kim Y-C (2016) Charged polymer-coated separators by atmospheric plasma-induced grafting for lithium-ion batteries. ACS Appl Mater & Interfaces 8:26073. https://doi.org/10.1021/acsami.6b08781

    Article  CAS  Google Scholar 

  61. Zhang TW, Chen JL, Tian T et al (2019) Sustainable separators for high-performance lithium ion batteries enabled by chemical modifications. Adv Funct Mater 29:1902023

    Article  Google Scholar 

  62. Liu L, Wang Y, Gao C et al (2019) Ultrathin ZrO2-coated separators based on surface sol-gel process for advanced lithium ion batteries. J Membr Sci 592:117368

    Article  CAS  Google Scholar 

  63. Chung Y, Yoo S, Kim C (2009) Enhancement of meltdown temperature of the polyethylene lithium-ion battery separator via surface coating with polymers having high thermal resistance. Ind Eng Chem Res 48:4346

    Article  CAS  Google Scholar 

  64. Sheng L, Song L, Gong H et al (2020) Polyethylene separator grafting with polar monomer for enhancing the lithium-ion transport property. J Power Sour 479:228812

    Article  CAS  Google Scholar 

  65. Sheng L, Xie X, Sun Z et al (2021) Role of separator surface polarity in boosting the lithium-ion transport property for a lithium-based battery. ACS Appl Energy Mater 4:5212

    Article  CAS  Google Scholar 

  66. Li X, Yuan L, Liu D et al (2021) Elevated lithium ion regulation by a “natural silk” modified separator for high-performance lithium metal anode. Adv Funct Mater 31:2100537

    Article  CAS  Google Scholar 

  67. Kim JF, Kim JH, Lee YM, Drioli E (2016) Thermally induced phase separation and electrospinning methods for emerging membrane applications: a review. AIChE J 62:461

    Article  CAS  Google Scholar 

  68. Remanan S, Sharma M, Bose S, Das NC (2018) Recent advances in preparation of porous polymeric membranes by unique techniques and mitigation of fouling through surface modification. ChemistrySelect 3:609

    Article  CAS  Google Scholar 

  69. Waqas M, Ali S, Lv W, Chen D, Boateng B, He W (2019) High-performance PE-BN/PVDF-HFP bilayer separator for lithium-ion batteries. Adv Mater Interfaces 6:1801330

    Article  Google Scholar 

  70. Wang Z, Pang P, Ma Z, Chen H, Nan J (2020) A four-layers Hamburger-Structure PVDF-HFP/Al2O3/PE/PVDF-HFP composite separator for pouch lithium-ion batteries with enhanced safety and reliability. J Electrochem Soc 167:090507

    Article  CAS  Google Scholar 

  71. Liu H, Dai Z, Xu J, Guo B, He X (2014) Effect of silica nanoparticles/poly (vinylidene fluoride-hexafluoropropylene) coated layers on the performance of polypropylene separator for lithium-ion batteries. J Energy Chem 23:582

    Article  Google Scholar 

  72. Liao H, Zhang H, Hong H et al (2016) Novel cellulose aerogel coated on polypropylene separators as gel polymer electrolyte with high ionic conductivity for lithium-ion batteries. J Membr Sci 514:332. https://doi.org/10.1016/j.memsci.2016.05.009

    Article  CAS  Google Scholar 

  73. Hu S, Lin S, Tu Y et al (2016) Novel aramid nanofiber-coated polypropylene separators for lithium ion batteries. J Mater Chem A 4:3513

    Article  CAS  Google Scholar 

  74. Wang H, Wu J, Cai C et al (2014) Mussel inspired modification of polypropylene separators by catechol/polyamine for Li-Ion batteries. ACS Appl Mater Interfaces 6:5602. https://doi.org/10.1021/am406052u

    Article  CAS  PubMed  Google Scholar 

  75. Zahn R, Lagadec MF, Hess M, Wood V (2016) Improving ionic conductivity and lithium-ion transference number in lithium-ion battery separators. ACS Appl Mater Interfaces 8:32637. https://doi.org/10.1021/acsami.6b12085

    Article  CAS  PubMed  Google Scholar 

  76. Shi C, Dai J, Shen X et al (2016) A high-temperature stable ceramic-coated separator prepared with polyimide binder/Al2O3 particles for lithium-ion batteries. J Membr Sci 517:91. https://doi.org/10.1016/j.memsci.2016.06.035

    Article  CAS  Google Scholar 

  77. Juang R-S, Hsieh C-T, Chen P-A, Chen Y-F (2015) Microwave-assisted synthesis of titania coating onto polymeric separators for improved lithium-ion battery performance. J Power Sour 286:526. https://doi.org/10.1016/j.jpowsour.2015.04.023

    Article  CAS  Google Scholar 

  78. Chao C-H, Hsieh C-T, Ke W-J et al (2021) Roll-to-roll atomic layer deposition of titania coating on polymeric separators for lithium ion batteries. J Power Sour 482:228896. https://doi.org/10.1016/j.jpowsour.2020.228896

    Article  CAS  Google Scholar 

  79. Chen W, Shi L, Zhou H et al (2016) Water-based organic–inorganic hybrid coating for a high-performance separator. ACS Sustain Chem Eng 4:3794

    Article  CAS  Google Scholar 

  80. Kim M, Park JH (2012) Inorganic thin layer coated porous separator with high thermal stability for safety reinforced Li-ion battery. J Power Sour 212:22. https://doi.org/10.1016/j.jpowsour.2012.03.038

    Article  CAS  Google Scholar 

  81. Wang M, Chen X, Wang H, Wu H, Jin X, Huang C (2017) Improved performances of lithium-ion batteries with a separator based on inorganic fibers. J Mater Chem A 5:311. https://doi.org/10.1039/C6TA08404D

    Article  CAS  Google Scholar 

  82. Yang C, Tong H, Luo C, Yuan S, Chen G, Yang Y (2017) Boehmite particle coating modified microporous polyethylene membrane: a promising separator for lithium ion batteries. J Power Sour 348:80. https://doi.org/10.1016/j.jpowsour.2017.02.078

    Article  CAS  Google Scholar 

  83. Yue H, Zhu Q, Dong S et al (2020) Nanopile interlocking separator coating toward uniform Li deposition of the Li metal anodes. ACS Appl Mater Interfaces 12:43543. https://doi.org/10.1021/acsami.0c08776

    Article  CAS  PubMed  Google Scholar 

  84. Chen W, Wang X, Liang J, Chen Y, Ma W, Zhang S (2022) A high performance polyacrylonitrile composite separator with cellulose acetate and nano-hydroxyapatite for lithium-ion batteries. Membranes 12:124

    Article  PubMed  PubMed Central  Google Scholar 

  85. Xu W, Wang Z, Shi L et al (2015) Layer-by-Layer deposition of organic-inorganic hybrid multilayer on microporous polyethylene separator to enhance the electrochemical performance of lithium-ion battery. ACS Appl Mater Interfaces 7:20678. https://doi.org/10.1021/acsami.5b05457

    Article  CAS  PubMed  Google Scholar 

  86. Choi Y, Kim JI, Moon J, Jeong J, Park JH (2018) Electron beam induced strong organic/inorganic grafting for thermally stable lithium-ion battery separators. Appl Surface Sci 444:339. https://doi.org/10.1016/j.apsusc.2018.03.093

    Article  CAS  Google Scholar 

  87. Rogez E, Claude-Montigny B, Violleau D, Rusiecki J-P, Motret O (2019) Surface properties enhancement of battery separator by micro-plasma treatments. J Appl Phys 125:213301

  88. Wang Z, Zhu H, Yang L, Wang X, Liu Z, Chen Q (2016) Plasma modified polypropylene membranes as the lithium-ion battery separators. Plasma Sci Technol 18:424

    Article  CAS  Google Scholar 

  89. Joseph J, Murdock AT, Seo DH, Han ZJ, O’Mullane AP, Ostrikov K (2018) Plasma enabled synthesis and processing of materials for lithium-ion batteries. Adv Mater Technol 3:1800070. https://doi.org/10.1002/admt.201800070

    Article  CAS  Google Scholar 

  90. Jin SY, Manuel J, Zhao X, Park WH, Ahn J-H (2017) Surface-modified polyethylene separator via oxygen plasma treatment for lithium ion battery. J Ind Eng Chem 45:15. https://doi.org/10.1016/j.jiec.2016.08.021

    Article  CAS  Google Scholar 

  91. Li X, He J, Wu D, Zhang M, Meng J, Ni P (2015) Development of plasma-treated polypropylene nonwoven-based composites for high-performance lithium-ion battery separators. Electrochim Acta 167:396. https://doi.org/10.1016/j.electacta.2015.03.188

    Article  CAS  Google Scholar 

  92. Nho Y-C, Sohn J-Y, Shin J, Park J-S, Lim Y-M, Kang P-H (2017) Preparation of nanocomposite γ-Al2O3/polyethylene separator crosslinked by electron beam irradiation for lithium secondary battery. Radiat Phys Chem 132:65. https://doi.org/10.1016/j.radphyschem.2016.12.002

    Article  CAS  Google Scholar 

  93. Guo M, Xiong J, Jin X et al (2023) Mussel stimulated modification of flexible Janus PAN/PVDF-HFP nanofiber hybrid membrane for advanced lithium-ion batteries separator. J Membr Sci 675:121533. https://doi.org/10.1016/j.memsci.2023.121533

    Article  CAS  Google Scholar 

  94. Chen Y, Qiu L, Ma X et al (2020) Electrospun PMIA and PVDF-HFP composite nanofibrous membranes with two different structures for improved lithium-ion battery separators. Solid State Ionics 347:115253. https://doi.org/10.1016/j.ssi.2020.115253

    Article  CAS  Google Scholar 

  95. Cai M, Yuan D, Zhang X et al (2020) Lithium ion battery separator with improved performance via side-by-side bicomponent electrospinning of PVDF-HFP/PI followed by 3D thermal crosslinking. J Power Sour 461:228123. https://doi.org/10.1016/j.jpowsour.2020.228123

    Article  CAS  Google Scholar 

  96. Lin S, Jiang Y, Li Y, Ding Y (2024) Core-shell structured PAN@PU/PVDF-HFP separators for Li-Ion batteries. Fibers Poly 25:807. https://doi.org/10.1007/s12221-024-00478-8

    Article  CAS  Google Scholar 

  97. Liang T, Liang W-H, Cao J-H, Wu D-Y (2021) Enhanced Performance of high energy density lithium metal battery with PVDF-HFP/LAGP composite separator. ACS Appl Energy Mater 4:2578. https://doi.org/10.1021/acsaem.0c03162

    Article  CAS  Google Scholar 

  98. Guo M, Dong S, Xiong J et al (2023) Flexible core-shell PAN/CNTs@PVDF-HFP/Uio-66-NH2 hybrid nanofibers membrane for advanced lithium-ion batteries separator. Mater Today Chem 30:101552. https://doi.org/10.1016/j.mtchem.2023.101552

    Article  CAS  Google Scholar 

  99. Zhang Y, He R, Li Y, Liu H, Liu H, Zhang X-X (2024) Fabrication of coaxially electrospun PEI@PVDF-HFP fibrous membrane as flame-retardant and anti-shrink separator for lithium-ion battery. Mater Lett 361:136063. https://doi.org/10.1016/j.matlet.2024.136063

    Article  CAS  Google Scholar 

  100. Xue C, Wang X, Yang G et al (2024) A polyvinylidene fluoride-Hexafluoropropylene (PVDF-HFP)/Carboxylated g-C3N4 composite separator for high-performance lithium-Ion batteries. ChemistrySelect 9:e202304054. https://doi.org/10.1002/slct.202304054

    Article  CAS  Google Scholar 

  101. Feng W, Zhang J, Yusuf A et al (2022) Quasi-solid-state sodium-ion hybrid capacitors enabled by UiO-66@PVDF-HFP multifunctional separators: Sective charge transfer and high fire safety. Chem Eng J 427:130919. https://doi.org/10.1016/j.cej.2021.130919

    Article  CAS  Google Scholar 

  102. Parsaei S, Zebarjad SM, Moghim MH (2022) Fabrication and post-processing of PI/PVDF-HFP/PI electrospun sandwich separators for lithium-ion batteries. Poly Eng Sci 62:3641. https://doi.org/10.1002/pen.26133

    Article  CAS  Google Scholar 

  103. Deng L, Cai C, Huang Y, Fu Y (2022) In-situ MOFs coating on 3D-channeled separator with superior electrolyte uptake capacity for ultrahigh cycle stability and dendrite-inhibited lithium-ion batteries. Microporous Mesoporous Mater 329:111544. https://doi.org/10.1016/j.micromeso.2021.111544

    Article  CAS  Google Scholar 

  104. Lee MJ, Hwang J-K, Kim JH et al (2016) Electrochemical performance of a thermally rearranged polybenzoxazole nanocomposite membrane as a separator for lithium-ion batteries at elevated temperature. J Power Sour 305:259. https://doi.org/10.1016/j.jpowsour.2015.11.068

    Article  CAS  Google Scholar 

  105. Zhu C, Zhang J, Xu J et al (2020) Facile fabrication of cellulose/polyphenylene sulfide composite separator for lithium-ion batteries. Carbohydrate poly 248:116753

    Article  CAS  Google Scholar 

  106. Liu J, Mo Y, Wang S et al (2019) Ultrastrong and heat-resistant poly(ether ether ketone) separator for dendrite-proof and heat-resistant lithium-ion batteries. ACS Appl Energy Mater 2:3886. https://doi.org/10.1021/acsaem.9b00568

    Article  CAS  Google Scholar 

  107. Jiang Y, Ding Y, Zhang P, Li F, Yang Z (2018) Temperature-dependent on/off PVP@TiO2 separator for safe Li-storage. J Membr Sci 565:33. https://doi.org/10.1016/j.memsci.2018.08.008

    Article  CAS  Google Scholar 

  108. Cai B-R, Cao J-H, Liang W-H, Yang L-Y, Liang T, Wu D-Y (2021) Ultraviolet-cured Al2O3-polyethylene terephthalate/polyvinylidene fluoride composite separator with asymmetric design and its performance in lithium batteries. ACS Appl Energy Mater 4:5293. https://doi.org/10.1021/acsaem.1c00804

    Article  CAS  Google Scholar 

  109. Xie Y, Pan Y, Cai P (2020) Novel PVA-Based Porous Separators prepared via freeze-drying for enhancing performance of lithium-ion batteries. Ind Eng Chem Res 59:15242. https://doi.org/10.1021/acs.iecr.0c02182

    Article  CAS  Google Scholar 

  110. Choi Y, Zhang K, Chung KY, Wang DH, Park JH (2016) PVdF-HFP/exfoliated graphene oxide nanosheet hybrid separators for thermally stable Li-ion batteries. RSC Adv 6:80706

    Article  CAS  Google Scholar 

  111. Song K, Huang Y, Liu X, Jiang Y, Zhang P, Ding Y (2020) Electrospun PI@ GO separators for Li-ion batteries: a possible solution for high-temperature operation. J Sol-Gel Sci Technol 94:109

    Article  CAS  Google Scholar 

  112. Chen Y, Li J, Ju Y et al (2022) Regulating Li-ion flux distribution via holey graphene oxide functionalized separator for dendrite-inhibited lithium metal battery. Appl Surface Sci 592:153222

    Article  CAS  Google Scholar 

  113. Zhu J, Chen C, Lu Y et al (2016) Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium–sulfur batteries. Carbon 101:272

    Article  CAS  Google Scholar 

  114. Shen C, Li Y, Gong M et al (2021) Ultrathin cobalt Phthalocyanine@Graphene oxide layer-modified separator for stable lithium-sulfur batteries. ACS Appl Mater Interfaces 13:60046. https://doi.org/10.1021/acsami.1c19859

    Article  CAS  PubMed  Google Scholar 

  115. Chen P, Ren H, Yan L et al (2019) Metal–organic frameworks enabled high-performance separators for safety-reinforced lithium ion battery. ACS Sustain Chem Eng 7:16612

    Article  CAS  Google Scholar 

  116. Dai M, Shen J, Zhang J, Li G (2017) A novel separator material consisting of ZeoliticImidazolate framework-4 (ZIF-4) and its electrochemical performance for lithium-ions battery. J Power Sour 369:27

    Article  CAS  Google Scholar 

  117. Huang D, Liang C, Chen L, Tang M, Zheng Z, Wang Z (2021) MOF composite fibrous separators for high-rate lithium-ion batteries. J Mater Sci 56:5868. https://doi.org/10.1007/s10853-020-05559-6

    Article  CAS  Google Scholar 

  118. Sun X, Xu W, Zhang X, Lei T, Lee S-Y, Wu Q (2021) ZIF-67@ Cellulose nanofiber hybrid membrane with controlled porosity for use as Li-ion battery separator. J Energy Chem 52:170

    Article  CAS  Google Scholar 

  119. He M, Zhang X, Jiang K, Wang J, Wang Y (2015) Pure inorganic separator for lithium ion batteries. ACS Appl Mater Interfaces 7:738. https://doi.org/10.1021/am507145h

    Article  CAS  PubMed  Google Scholar 

  120. Xiang H, Chen J, Li Z, Wang H (2011) An inorganic membrane as a separator for lithium-ion battery. J Power Sour 196:8651. https://doi.org/10.1016/j.jpowsour.2011.06.055

    Article  CAS  Google Scholar 

  121. Shi C, Zhu J, Shen X et al (2018) Flexible inorganic membranes used as a high thermal safety separator for the lithium-ion battery. RSC Adv 8:4072. https://doi.org/10.1039/C7RA13058A

    Article  CAS  Google Scholar 

  122. Zhao X, Zhang Z, Yang S, Liang G (2017) Inorganic ceramic fiber separator for electrochemical and safety performance improvement of lithium-ion batteries. Ceramics Int 43:14775. https://doi.org/10.1016/j.ceramint.2017.07.219

    Article  CAS  Google Scholar 

  123. Wang J, Liu Y, Cai Q, Dong A, Yang D, Zhao D (2022) Hierarchically porous silica membrane as separator for high-performance lithium-ion batteries. Adv Mater 34:2107957. https://doi.org/10.1002/adma.202107957

    Article  CAS  Google Scholar 

  124. Li H, Wu D, Wu J, Dong L-Y, Zhu Y-J, Hu X (2017) Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries. Adv Mater 29:1703548. https://doi.org/10.1002/adma.201703548

    Article  CAS  Google Scholar 

  125. Jiang Y, Zhang P, Jin H, Liu X, Ding Y (2019) Flexible, nonflammable and Li-dendrite resistant Na2Ti3O7 nanobelt-based separators for advanced Li storage. J Membr Sci 583:190. https://doi.org/10.1016/j.memsci.2019.04.032

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Scientific Research Project of Education Department of Hunan Province (22A0113) and Major Science and Technology Projects of Xiangtan Science and Technology Bureau (GX-ZD202210011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanhuai Ding or Haibao Jin.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Jiang, Y., Zeng, C. et al. Recent progress of advanced separators for Li-ion batteries. J Mater Sci 59, 12154–12176 (2024). https://doi.org/10.1007/s10853-024-09895-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09895-9

Navigation