Skip to main content
Log in

Microstructure-based interior cracking behavior of α + β titanium alloy under two stress ratios and intermediate temperature in the very high-cycle fatigue regime

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Axial loading fatigue tests were conducted for α + β titanium alloy with two stress ratios to elucidate the microstructure-based interior cracking behavior at 150 °C temperature. The interior failure is attributed to the cleavage of the large primary α-grains (αp) and facet–facet cluster zone–fisheye formation, which is the primary failure mode in the very high-cycle fatigue regime. Furthermore, microcracks are generated through soft-oriented large αp-grains along the {0001} slip plane in the direction of maximum shear stress, forming the crystallographic facets. Moreover, due to the variation in the grain orientation, significant plastic deformation is produced within the facet-cluster zone. The low-angle grain boundaries offer limited resistance in the propagation of the formed crack, which can pass through neighboring grains easily, exhibiting characteristic transcrystalline failure. Based on the analysis above, the interior fracture mechanism was summarized as related to the microstructure characteristics. In addition, dislocation configurations, slip bands, and stacking faults indicate that the deformation behavior with faceting-induced fracture occurs by joint action of dislocation bypassing, stacking fault shearing, and increasing thermal activation energy at intermediate temperature. The microstructure-based interior failure mechanism is presented based on electron backscatter diffraction, focused-ion beam, and transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Sajadifar SV, Wegener T, Yapici GG, Niendor T (2019) Effect of grain size on the very high cycle fatigue behavior and notch sensitivity of titanium. Theor Appl Fract Mech 104:102362

    Article  CAS  Google Scholar 

  2. Li B, Gao T, Xue H, Sun Z (2022) Estimation of fatigue crack initiation in the very high cycle fatigue regime for AA7075-T6 alloy using crystal plasticity finite element method. J Mater Sci 57:1–15. https://doi.org/10.1007/s10853-021-06790-5

    Article  CAS  Google Scholar 

  3. Geathers J, Torbet CJ, Jones JW, Daly S (2015) Investigating environmental effects on small fatigue crack growth in Ti–6242S using combined ultrasonic fatigue and scanning electron microscopy. Int J Fatigue 70:154–162

    Article  CAS  Google Scholar 

  4. Furuya Y, Takeuchi E (2014) Gigacycle fatigue properties of Ti-6Al-4V alloy under tensile mean stress. Mater Sci Eng A 598:135–140

    Article  CAS  Google Scholar 

  5. Heinz S, Eifler D (2016) Crack initiation mechanisms of Ti6Al4V in the very high cycle fatigue regime. Int J Fatigue 93:301–308

    Article  CAS  Google Scholar 

  6. Li W, Zhao H, Nehila A, Zhang Z, Sakai T (2017) Very high cycle fatigue of TC4 titanium alloy under variable stress ratio: failure mechanism and life prediction. Int J Fatigue 104:342–354

    Article  CAS  Google Scholar 

  7. Wang B, Cheng L, Li D (2022) Study on very high cycle fatigue properties of forged TC4 titanium alloy treated by laser shock peening under three-point bending. Int J Fatigue 156:106668

    Article  CAS  Google Scholar 

  8. Guo Z, Ma T, Chen T, Wang J, Chen X, Yang X, Vairis A (2023) Linear friction welding of equiaxed Ti17 titanium alloy: effects of microstructure evolution on tensile and impact properties. J Mater Sci 58:10189–10200. https://doi.org/10.1007/s10853-023-08666-2

    Article  CAS  Google Scholar 

  9. Oguma H, Nakamura T (2010) The effect of microstructure on very high cycle fatigue properties in Ti-6Al-4V. Scr Mater 63:32–34

    Article  CAS  Google Scholar 

  10. Crupi V, Epasto G, Guglielmino E, Squillace A (2017) Influence of microstructure [alpha+ beta and beta] on very high cycle fatigue behaviour of Ti-6Al-4V alloy. Int J Fatigue 95:64–75

    Article  CAS  Google Scholar 

  11. Wang S, Li S, Liu L, Li S, Gao L, Liu H, Zhou S (2023) Microstructure and mechanical properties of powder metallurgy Ti-TiBw-xFe titanium matrix composites using Ti-TiBw composite powder. J Mater Sci 58:13662–13677. https://doi.org/10.1007/s10853-023-08870-0

    Article  CAS  Google Scholar 

  12. Bayraktar E, Claude Bathias H, Xue TH (2004) On the giga cycle fatigue behaviour of two-phase (2+) TiAl alloy. Int J Fatigue 26(12):1263–1275

    Article  CAS  Google Scholar 

  13. Syed AK, Zhang X, Davis AE, Kennedy JR, Martina F, Ding J, Williams S, Prangnell PB (2021) Effect of deposition strategies on fatigue crack growth behaviour of wire+ arc additive manufactured titanium alloy Ti–6Al–4V. Mater Sci Eng A 814:141194

    Article  CAS  Google Scholar 

  14. Hémery S, Azdine Nait-Ali M, Guéguen PV (2018) Mechanical study of crystalline orientation distribution in Ti-6Al-4V: an assessment of micro-texture induced load partitioning. Mater Design 137:22–32

    Article  Google Scholar 

  15. Pagan DC, Peterson KM, Shade PA, Pilchak AL, Dye D (2023) Using the Ti–Al system to understand plasticity and its connection to fracture and fatigue in α Ti alloys. Metall Mater Trans A 54(9):3373–3388

    Article  CAS  Google Scholar 

  16. Xiao X, Mao Y, Qin D, Wang X, Fu L (2023) Effects of microstructure composition and orientation on micro mechanical properties of linear friction welding joint weld zone for heteromorphic TC17 titanium alloy. J Mater Sci 58:16208–16224. https://doi.org/10.1007/s10853-023-09008-y

    Article  CAS  Google Scholar 

  17. Szczepanski CJ, Jha SK, Larsen JM, Jones JW (2012) The role of local microstructure on small fatigue crack propagation in an α+ β titanium alloy, Ti-6Al-2Sn-4Zr-6Mo. Metall Mater Trans A 43:4097–4112

    Article  CAS  Google Scholar 

  18. Fu R, Zheng L, Ling C, Zhong Z, Hong Y (2022) An experimental investigation of fatigue performance and crack initiation characteristics for an SLMed Ti-6Al-4V under different stress ratios up to very-high-cycle regime. Int J Fatigue 164:107119

    Article  CAS  Google Scholar 

  19. Pan X, Shouwen Xu, Qian G, Nikitin A, Shanyavskiy A, Palin-Luc T, Hong Y (2020) The mechanism of internal fatigue-crack initiation and early growth in a titanium alloy with lamellar and equiaxed microstructure. Mater Sci Eng A 798:140110

    Article  CAS  Google Scholar 

  20. Liu H, Wang H, Huang Z, Wang Q, Chen Q (2020) Comparative study of very high cycle tensile and torsional fatigue in TC17 titanium alloy. Int J Fatigue 139:105720

    Article  CAS  Google Scholar 

  21. Kuliiev R, Riekehr S, Ventzke V, Keller S, Kashaev N (2023) On the effect of testing frequency on high and very high cycle fatigue behavior of AA2024-T3, Ti-6Al-4V, and inconel 718. J Mater Eng Perform 32(23):10843–10856

    Article  CAS  Google Scholar 

  22. Singh SN, Deoghare AB (2023) High layer thickness laser directed energy deposition of Ti6Al4V alloy: Microstructure, fatigue behavior and fractography. Eng Fail Anal 148:107208

    Article  Google Scholar 

  23. Viespoli LM, Bressan S, Itoh T, Hiyoshi N, Prashanth KG, Berto F (2020) Creep and high temperature fatigue performance of as build selective laser melted Ti-based 6Al-4V titanium alloy. Eng Fail Anal 111:104477

    Article  CAS  Google Scholar 

  24. Tokaji K (2006) High cycle fatigue behaviour of Ti–6Al–4V alloy at elevated temperatures. Scr Mater 54(12):2143–2148

    Article  CAS  Google Scholar 

  25. Han Q, Lei X, Yang H, Yang X, Su Z, Rui SS, Shi H (2021) Effects of temperature and load on fretting fatigue induced geometrically necessary dislocation distribution in titanium alloy. Mater Sci Eng A 800:140308

    Article  CAS  Google Scholar 

  26. Li H, Tian Z, Zheng J, Huang K, Nie B, Xu W, Zhao Z (2023) A defect-based fatigue life estimation method for laser additive manufactured Ti-6Al-4V alloy at elevated temperature in very high cycle regime. Int J Fatigue 167:107375

    Article  CAS  Google Scholar 

  27. Li P, Warner DH, Fatemi A, Phan N (2016) Critical assessment of the fatigue performance of additively manufactured Ti–6Al–4V and perspective for future research. Int J Fatigue 85:130–143

    Article  CAS  Google Scholar 

  28. Eylon D, Hall JA (1977) Fatigue behavior of beta processed titanium alloy IMI 685. Metall Trans A 8:981–990

    Article  Google Scholar 

  29. Nikitin A, Palin-Luc T, Shanyavskiy A (2016) Crack initiation in VHCF regime on forged titanium alloy under tensile and torsion loading modes Int. J Fatigue 93:318–325

    Article  CAS  Google Scholar 

  30. Nalla RK, Ritchie RO, Boyce BL, Campbell JP, Peters JO (2002) Influence of microstructure on high-cycle fatigue of Ti-6Al-4V: Bimodal versus lamellar structures. Metall Mater Trans A 33:899–918

    Article  Google Scholar 

  31. Voudouris G, Di Maio D, Sever IA (2020) Experimental fatigue behaviour of CFRP composites under vibration and thermal loading. Int J Fatigue 140:105791

    Article  CAS  Google Scholar 

  32. Dunstan MK, Paramore JD, Fang ZZ (2018) The effects of microstructure and porosity on the competing fatigue failure mechanisms in powder metallurgy Ti-6Al-4V. Int J Fatigue 116:584–591

    Article  CAS  Google Scholar 

  33. Marines-Garcia I, Paris PC, Tada H, Bathias C, Lados D (2008) Fatigue crack growth from small to large cracks on very high cycle fatigue with fish-eye failures. Eng Fract Mech 75(6):657–1665

    Article  Google Scholar 

  34. Biswal R, Zhang X, Syed AK, Awd M, Ding J, Walther F, Williams S (2019) Criticality of porosity defects on the fatigue performance of wire+ arc additive manufactured titanium alloy. Int J Fatigue 122:208–217

    Article  CAS  Google Scholar 

  35. Shiozawa K, Morii Y, Nishino S, Lu L (2006) Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime. Int J Fatigue 28(11):1521–1532

    Article  CAS  Google Scholar 

  36. Sun C, Song Q, Zhou L, Pan X (2019) Characteristic of interior crack initiation and early growth for high cycle and very high cycle fatigue of a martensitic stainless steel. Mater Sci Eng A 758:112–120

    Article  CAS  Google Scholar 

  37. Yang K, He C, Huang Qi, Huang ZY, Wang C, Wang Q, Liu YJ, Zhong B (2017) Very high cycle fatigue behaviors of a turbine engine blade alloy at various stress ratios. Int J Fatigue 99:35–43

    Article  CAS  Google Scholar 

  38. Wang P, Mao P, Zhou L, Wang Z, Wang F, Wei Z, Liu Z (2024) Effect of α phase morphologies on shear localization behavior of TC4 titanium alloy at high strain rate. J Mater Sci 59:1–16. https://doi.org/10.1007/s10853-024-09385-y

    Article  CAS  Google Scholar 

  39. Wu Y, Liu J, Wang H, Guan S, Yang R, Xiang H (2018) Effect of stress ratio on very high cycle fatigue properties of Ti-10V-2Fe-3Al alloy with duplex microstructure. J Mater Sci Technol 34(7):1189–1195. https://doi.org/10.1016/j.jmst.2017.11.036

    Article  CAS  Google Scholar 

  40. Huang ZY, Liu HQ, Wang HM, Wagner D, Khan MK, Wang QY (2016) Effect of stress ratio on VHCF behavior for a compressor blade titanium alloy. Int J Fatigue 93:232–237

    Article  CAS  Google Scholar 

  41. Liu X, Sun C, Hong Y (2015) Effects of stress ratio on high-cycle and very-high-cycle fatigue behavior of a Ti–6Al–4V alloy. Mater Sci Eng A 622:228–235

    Article  CAS  Google Scholar 

  42. Tokaji K, Kariya H (2000) Mean stress dependence of fatigue strength and subsurface crack initiation in Ti–15Mo–5Zr–3Al alloy. Mater Sci Eng, A 281(1–2):268–274

    Article  Google Scholar 

  43. Zuo JH, Wang ZG, Han EH (2008) Effect of microstructure on ultra-high cycle fatigue behavior of Ti–6Al–4V. Mater Sci Eng A 73(1–2):147–152

    Article  Google Scholar 

  44. Gao T, Xue H, Sun Z (2021) Effect of transformed β phase on fish-eye ductile crack initiation of a Ti-6Al-4V alloy in very high cycle fatigue regime. Mater Letters 287:129283

    Article  CAS  Google Scholar 

  45. Gao Tao Xu, Zhao HX, Sun Z (2022) Characteristics and micromechanisms of fish-eye crack initiation of a Ti-6Al-4V alloy in very high cycle fatigue regime. J Mater Research Technol 21:3140–3153

    Article  Google Scholar 

  46. Sun C, Chi W, Wang W, Duan Y (2021) Characteristic and mechanism of crack initiation and early growth of an additively manufactured Ti-6Al-4V in very high cycle fatigue regime. Int J Mechanical Sci 205:106591

    Article  Google Scholar 

  47. Takeuchi E, Furuya Y, Nagashima N, Matsuoka S (2008) The effect of frequency on the giga-cycle fatigue properties of a Ti–6Al–4V alloy. Fatigue Fract Eng Mater Struct 31(7):599–605

    Article  CAS  Google Scholar 

  48. Kakiuchi T, Kawaguchi R, Nakajima M, Hojo M, Fujimoto K, Uematsu Y (2019) Prediction of fatigue limit in additively manufactured Ti-6Al-4V alloy at elevated temperature. Int J Fatigue 126:55–61

    Article  CAS  Google Scholar 

  49. Liu FL, Chen Y, He C, Li L, Wang C, Li HZ et al (2021) Tensile and very high cycle fatigue behaviors of a compressor blade titanium alloy at room and high temperatures. Mater Sci Eng A 811:141049

    Article  CAS  Google Scholar 

  50. Wu Y, Xiong Y, Liu W, Chen Z, Zhang X, Wang S, Cao W (2021) Effect of supersonic fine particle bombardment on microstructure and fatigue properties of Ti-6.5 Al-3.5 Mo-1.5 Zr-0.3 Si titanium alloy at different temperatures. Surf Coat Technol 421:127473

    Article  CAS  Google Scholar 

  51. Li G, Sun C (2022) High-temperature failure mechanism and defect sensitivity of TC17 titanium alloy in high cycle fatigue. J Mater Sci Technol 122:128–140. https://doi.org/10.1016/j.jmst.2022.01.010

    Article  CAS  Google Scholar 

  52. Li W, Li M, Sun R, Xing X, Wang P, Sakai T (2020) Faceted crack induced failure behavior and micro-crack growth based strength evaluation of titanium alloys under very high cycle fatigue. Int J Fatigue 131:105369

    Article  CAS  Google Scholar 

  53. Li W, Xing X, Gao N, Li M, Sun R, Zhou S, Sakai T (2019) Subsurface facets-induced crack nucleation behavior and microstructure-based strength evaluation of titanium alloys in ultra-long life regime. Mater Sci Eng A 761:138055

    Article  CAS  Google Scholar 

  54. Li W, Li X, Sun C, Sun R, Hu T, Wang S, Lashari MI (2023) Multi-scale experimental investigation on microstructure related subsurface fatigue cracking behavior of selective-laser-melted superalloy at elevated temperature. Mater Charact 201:112960

    Article  CAS  Google Scholar 

  55. Sakai T (2023) Historical review and future prospect for researches on very high cycle fatigue of metallic materials. Fatigue Fract Eng Mater Struct 46(4):1217–1255

    Article  Google Scholar 

  56. Zhou W, Zhu G, Wang R, Yang C, Tian Y, Zhang L, Dong A, Wang D, Shu D, Sun B (2020) Inhibition of cracking by grain boundary modification in a non-weldable nickel-based superalloy processed by laser powder bed fusion. Mater Sci Eng A 791:139745

    Article  CAS  Google Scholar 

  57. Wu Z, Kou H, Chen N, Zhang Z, Qiang F, Fan J et al (2020) The effect of cubic-texture on fatigue cracking in a metastable β titanium alloy subjected to high-cycle fatigue. Int J Fatigue 14:105872

    Article  Google Scholar 

  58. Bridier F, Villechaise P, Mendez J (2005) Analysis of the different slip systems activated by tension in a α/β titanium alloy in relation with local crystallographic orientation. Acta Mater 53(3):555–567

    Article  CAS  Google Scholar 

  59. Lavogiez C, Hemery S, Villechaise P (2020) Analysis of deformation mechanisms operating under fatigue and dwell-fatigue loadings in an α/β titanium alloy. Int J Fatigue 131:105341

    Article  CAS  Google Scholar 

  60. Clancy M, Pomeroy MJ, Belochapkine S (2012) Improved FIB milling process for TEM preparation of NiAlPt bulk alloy samples containing residual stress. Micron 43(5):627–630

    Article  CAS  Google Scholar 

  61. Chen C-L, Shang D-G, Tang Z-Q, Li D-H, Yin X, Guo Y-E (2023) Fatigue failure mechanism of Ti60 titanium alloy in HCF and VHCF regime at different temperatures. Eng Fail Anal 151:107393

    Article  CAS  Google Scholar 

  62. Neal DF, P. A., Blenkinsop, (1976) Internal fatigue origins in α-β titanium allols. Acta Metall 24(1):59–63

    Article  CAS  Google Scholar 

  63. Furukawa M, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1996) Microhardness measurements and the hall-petch relationship in an Al-Mg alloy with submicrometer grain size. Acta Mater 44(11):4619–4629

    Article  CAS  Google Scholar 

  64. Liu F, Chen Y, He C, Wang C, Li L, Liu Y et al (2021) Very long life fatigue failure mechanism of electron beam welded joint for titanium alloy at elevated temperature. Int J Fatigue 152:106446

    Article  CAS  Google Scholar 

  65. Chan KS (2010) Changes in fatigue life mechanism due to soft grains and hard particles. Int J Fatigue 32(3):526–534

    Article  CAS  Google Scholar 

  66. Chai G, Zhou N, Ciurea S, Andersson M, Peng RL (2012) Local plasticity exhaustion in a very high cycle fatigue regime. Scripta Mater 66(10):769–772

    Article  CAS  Google Scholar 

  67. Everaerts J, Verlinden B, Wevers M (2017) Investigation of fatigue crack initiation facets in Ti-6Al-4V using focused ion beam milling and electron backscatter diffraction. J Microsc 267(1):57–69

    Article  PubMed  CAS  Google Scholar 

  68. Li W, Sun R, Wang P, XiaoLong Li, Zhang Y, Hu T et al (2021) Subsurface faceted-cracking behavior of selective laser melting Ni-based superalloy under very high cycle fatigue. Scripta Mater 194:113613

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52175128) and the State Key Laboratory for Mechanical Behavior of Materials (No. 20232501).

Author information

Authors and Affiliations

Authors

Contributions

Asif Mahmood contributed to conceptualization, investigation, and writing—original draft. Chuanwen Sun was involved in validation. Muhammad Imran Lashari contributed to formal analysis. Wei Li was involved in writing—review and editing.

Corresponding author

Correspondence to Wei Li.

Ethics declarations

Conflict of interest

We declare that we have no financial or personal relationships with other people or organizations that can inappropriately influence our work. There is no professional or other personal interest of any nature or kind in any product, service, and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Handling Editor: Nima Haghdadi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmood, A., Sun, C., Lashari, M.I. et al. Microstructure-based interior cracking behavior of α + β titanium alloy under two stress ratios and intermediate temperature in the very high-cycle fatigue regime. J Mater Sci 59, 12695–12714 (2024). https://doi.org/10.1007/s10853-024-09892-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09892-y

Navigation