Skip to main content
Log in

Improved visible light-responsive bisphenol A photodegradation utilizing TiO2/WS2 photocatalytic membranes with energy storage ability

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Membrane separation and photocatalytic degradation are essential technologies for wastewater purification, but they encounter challenges like membrane fouling and low photocatalytic efficiency. The integration of photocatalysis and membrane technology, along with the creation of a heterojunction photocatalyst, proves to be a promising solution by enhancing the efficiency of charge carrier transport. Titanium dioxide (TiO2) and tungsten disulfide (WS2) are key components, each offering unique benefits such as TiO2 stability and WS2 strong adsorption of visible light. TiO2/WS2 is synthesized through a one-step hydrothermal method at distinct hydrothermal times. A TiO2/WS2 photocatalytic membrane is constructed using the co-extrusion technique, with varying ratios of TiO2/WS2. The membrane undergoes characterization for both morphology and properties, as well as photocatalytic testing. TiO2/WS2 synthesized over a 20 h hydrothermal period is selected for deposition into the polyvinylidene fluoride (PVDF) membrane matrix. The resulting 0.5 wt% TiO2/WS2 photocatalytic membrane exhibits improved wettability, high porosity, and favorable water flux, demonstrating outstanding photocatalytic activity with an 85.3% degradation of bisphenol A (BPA) under visible light. The membrane also shows an 80.4% rejection of 1 mg/L BPA in dark conditions. In terms of energy storage, the 0.5 wt% TiO2/WS2 photocatalytic membrane exhibits a BPA photocatalytic performance resulting in 51.0% photodegradation, while the rejection rate reaches 27.4% for BPA removal after 120 min. In conclusion, the TiO2/WS2 photocatalytic membrane serves as a versatile solution, enhancing both photocatalytic degradation and rejection capabilities, with potential for energy storage in removing BPA from aquatic environments, regardless of light presence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Data availability

Data will be made available upon request.

References

  1. Maturi KC, Haq I, Kalamdhad AS (2023) Fate, effects, origins, and biodegradation of bisphenol A in wastewater. In: Current developments in biotechnology and bioengineering, p 39–54

  2. Kimura E, Matsuyoshi C, Miyazaki W, Benner S, Hosokawa M, Yokoyama K, Kakeyama M, Tohyama C (2016) Prenatal exposure to bisphenol A impacts neuronal morphology in the hippocampal CA1 region in developing and aged mice. Arch Toxicol 90:691–700

    Article  CAS  PubMed  Google Scholar 

  3. Agenson KO, Oh JI, Kikuta T, Urase T (2003) Rejection mechanisms of plastic additives and natural hormones in drinking water treated by nanofiltration. Water Sci Technol Water Supply 3(5–6):311–319

    Article  CAS  Google Scholar 

  4. Rohani R, Hyland M, Patterson D (2011) A refined one-filtration method for aqueous based nanofiltration and ultrafiltration membrane molecular weight cut-off determination using polyethylene glycols. J Membr Sci 382(1–2):278–290

    Article  CAS  Google Scholar 

  5. Urošević T, Trivunac K (2020) Achievements in low-pressure membrane processes microfiltration (MF) and ultrafiltration (UF) for wastewater and water treatment. In: Current trends and future developments on (bio-) membranes, Elsevier, p 67–107

  6. Sun XF, Qin J, Xia PF, Guo BB, Yang CM, Song C, Wang SG (2015) Graphene oxide–silver nanoparticle membrane for biofouling control and water purification. Chem Eng J 281:53–59

    Article  CAS  Google Scholar 

  7. Zhang Y, Yan J (2023) Recent advances in the synthesis of defective TiO2 nanofibers and their applications in energy and catalysis. Chem Eng J 472:2–3

    Article  Google Scholar 

  8. Khan H, Shah MUH (2023) Modification strategies of TiO2 based photocatalysts for enhanced visible light activity and energy storage ability: a review. J Environ Chem Eng 11:2–3

    Article  Google Scholar 

  9. Ashraf W, Parvez SH, Khanuja M (2023) Synthesis of highly efficient novel two-step spatial 2D photocatalyst material WS2/ZnIn2S4 for degradation/reduction of various toxic pollutants. Environ Res 236:2–3

    Article  Google Scholar 

  10. Patel M, Pataniya PM, Patel V, Sumesh CK (2022) Flexible photodetector based on Graphite/ZnO–WS2 nanohybrids on paper. J Mater Sci Mater Electron 33(17):13771–13781

    Article  CAS  Google Scholar 

  11. Mao Y, Park TJ, Zhang F, Zhou H, Wong SS (2007) Environmentally friendly methodologies of nanostructure synthesis. Small 3(7):1122–1139

    Article  CAS  PubMed  Google Scholar 

  12. Xiao Y, Xu S, Li Z, An X, Zhou L, Zhang Y, Shiang FQ (2010) Progress of applied research on TiO2 photocatalysis-membrane separation coupling technology in water and wastewater treatments. Chin Sci Bull 55:1345–1353

    Article  Google Scholar 

  13. Lee JW, Kwon TO, Thiruvenkatachari R, Moon IS (2006) Adsorption and photocatalytic degradation of bisphenol A using TiO2 and its separation by submerged hollowfiber ultrafiltration membrane. J Environ Sci 18(1):193–200

    CAS  Google Scholar 

  14. Ashley A, Thrope B, Choudhury MR, Pinto AH (2022) Emerging investigator series: photocatalytic membrane reactors: fundamentals and advances in preparation and application in wastewater treatment. Environ Sci: Water Res Technol 8(1):22–46

    CAS  Google Scholar 

  15. Aswal D (2022) Synthesis of tungsten disulfide (WS2) and its hybrids by hydrothermal method for enhancement of photocatalysis. 3–9

  16. Zhang J, Wu H, Shi L, Wu Z, Zhang S, Wang S, Sun H (2023) Photocatalysis coupling with membrane technology for sustainable and continuous purification of wastewater. Sep Purif Technol 3–9

  17. Ismail NJ, Othman MHD, Bakar SA, Kadir SHSA, Abd Aziz MH, Pauzan MAB, Hubadillah SK, El-Badawy T, Jaafar J, Rahman MA (2020) Hydrothermal synthesis of TiO2 nanoflower deposited on bauxite hollow fibre membrane for boosting photocatalysis of bisphenol A. J Water Process Eng 37:3–9

    Article  Google Scholar 

  18. Newbury DE (2001) Misidentification of elements via overlapping peaks in energy-dispersive X-ray spectrometry. J Res Nat Inst Stand Technol 106(1):1–23

    Google Scholar 

  19. Goldstein J, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E, Michael JR (2018) Scanning electron microscopy and X-ray microanalysis. Springer, Berlin

    Book  Google Scholar 

  20. Mohamed Noor SH, Othman MHD, Khongnakorn W, Sinsamphanh O, Abdullah H, Puteh MH, Kurniawan TA, Zakria HS, El-Badawy T, Ismail AF, Rahman MA (2022) Bisphenol A removal using visible light driven Cu2O/PVDF photocatalytic dual layer hollow fiber membrane. Membranes 12(2):3–9

    Article  Google Scholar 

  21. Liu Y, Zhang Q, Xu M, Yuan H, Chen Y, Zhang J, Luo K, Zhang J, You B (2019) Novel and efficient synthesis of Ag–ZnO nanoparticles for the sunlight-induced photocatalytic degradation. Appl Surf Sci 476:632–640

    Article  CAS  Google Scholar 

  22. Ansari MZ, Ansari SA, Parveen N, Cho MH, Song T (2018) Lithium ion storage ability, supercapacitor electrode performance, and photocatalytic performance of tungsten disulfide nanosheets. New J Chem 42(8):5859–5867

    Article  CAS  Google Scholar 

  23. Hazarika SJ, Mohanta D (2019) Excitation dependent light emission and enhanced photocatalytic response of WS2/C-dot hybrid nanoscale systems. J Lumin 206:530–539

    Article  CAS  Google Scholar 

  24. Wang X, Zhang Z, Huang Z, Dong P, Nie X, Jin Z, Zhang X (2020) Electrospun PVDF nanofibers decorated with graphene and titania for improved visible light photocatalytic methanation of CO2. Plasmonics 15:717–725

    Article  CAS  Google Scholar 

  25. Zhang Z, Wang CC, Zakaria R, Ying JY (1998) Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B 102(52):10871–10878

    Article  CAS  Google Scholar 

  26. Kuru C, Choi D, Kargar A, Liu CH, Yavuz S, Choi C, Jin S, Bandaru PR (2016) High-performance flexible hydrogen sensor made of WS2 nanosheet–Pd nanoparticle composite film. Nanotechnology 27(19):13

    Article  Google Scholar 

  27. Thakur VK, Vennerberg D, Kessler MR (2014) Green aqueous surface modification of polypropylene for novel polymer nanocomposites. ACS Appl Mater Interfaces 6(12):9349–9356

    Article  CAS  PubMed  Google Scholar 

  28. Zhang M, Wang S, Li Z, Liu C, Miao R, He G, Zhao M, Xue J, Xia Z, Wang Y, Sun Z (2019) Hydrothermal synthesis of MoS2 nanosheet loaded TiO2 nanoarrays for enhanced visible light photocatalytic applications. RSC Adv 9(6):3479–3485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shi J, Wang X, Zhang S, Xiao L, Huan Y, Gong Y, Zhang Z, Li Y, Zhou X, Hong M, Fang Q (2017) Two-dimensional metallic tantalum disulfide as a hydrogen evolution catalyst. Nat Commun 8(1):18

    Article  Google Scholar 

  30. Ren R (2018) Synthesis and characterization of transition metal oxide and dichalcogenide nanomaterials for energy and environmental applications. In: Doctoral dissertation, The University of Wisconsin-Milwaukee, p 18

  31. Nguyen-Phan TD, Pham VH, Chung JS, Chhowalla M, Asefa T, Kim WJ, Shin EW (2014) Photocatalytic performance of Sn-doped TiO2/reduced graphene oxide composite materials. Appl Catal A 473:21–30

    Article  CAS  Google Scholar 

  32. Kadam AN, Dhabbe RS, Kokate MR, Garadkar KM (2014) Room temperature synthesis of CdS nanoflakes for photocatalytic properties. J Mater Sci Mater Electron 25:1887–1892

    Article  CAS  Google Scholar 

  33. Chen S, Li B, Xiao R, Luo H, Yu S, He J, Liao X (2021) Design an epoxy coating with TiO2/GO/PANI nanocomposites for enhancing corrosion resistance of Q235 carbon steel. Materials 14(10):21

    Article  Google Scholar 

  34. Zhang L, Wan J, Hu Z, Jiang W (2017) Preparation and photocatalytic activity of TiO2-wrapped cotton nanofiber composite catalysts. BioResources 12(3):6062–6081

    Article  CAS  Google Scholar 

  35. Wang M, Miao W, Xu H, Huang C, Li M, Shao G, Wang H, Lu H, Zhang R (2022) Significant improvement of photocatalytic activity of TiO2/g–C3N4 composite synthesized by the aiding of hydrothermal method. NANO 17(01):21

    Article  Google Scholar 

  36. Li D, Sun J, Shen T, Song H, Liu J, Wang C, Wang C, Wang X, Zhao R (2020) Influence of morphology and interfacial interaction of TiO2–graphene nanocomposites on the visible light photocatalytic performance. J Solid State Chem 286:22

    Article  Google Scholar 

  37. Li X, Yu J, Jaroniec M (2020) Hierarchical photocatalysts. Chem Soc Rev 49(13):4687–4708

    Google Scholar 

  38. Wang Q, Domen K (2018) Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem Rev 120(2):919–985

    Article  Google Scholar 

  39. Zhao Z, Sun Y, Dong F (2021) Graphene-based materials for photocatalysis. ACS Appl Nano Mater 4(4):2876–2901

    Google Scholar 

  40. Truong HB, Doan TTL, Hoang NT, Van Tam N, Nguyen MK, Gwag JS, Tran NT (2024) Tungsten-based nanocatalysts with different structures for visible light responsive photocatalytic degradation of bisphenol A. J Environ Sci 139:569–588

    Article  CAS  Google Scholar 

  41. Kumar S, Tripathi A, Moronshing M, Kumari P (2024) Advances in MXenes-based photocatalysts for hydrogen evolution: fundamentals, synthesis, and applications. In: Towards sustainable and green hydrogen production by photocatalysis: insights into design and development of efficient materials, vol 2. American Chemical Society, p 145–172

  42. Li X, Wang S (2019) Energy management and operational control methods for grid battery energy storage systems. CSEE J Power Energy Syst 7(5):1026–1040

    Google Scholar 

  43. Zeng Q, Lai Y, Jiang L, Liu F, Hao X, Wang L, Green MA (2020) Integrated photorechargeable energy storage system: next-generation power source driving the future. Adv Energy Mater 10(14):25

    Article  Google Scholar 

  44. Devi LG, Kavitha R (2016) A review on plasmonic metal TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system. Appl Surf Sci 360:601–622

    Article  Google Scholar 

  45. Zhang M, Yang Y, An X, Hou LA (2021) A critical review of g-C3N4-based photocatalytic membrane for water purification. Chem Eng J 412:25–26

    Article  Google Scholar 

  46. Bagheri S, Julkapli NM, Yusof Hamid MR, Ziaei R, Sagadevan S (2023) Nanomaterials aspects for photocatalysis as potential for the inactivation of COVID-19 virus. Catalysts 13(3):25–26

    Article  Google Scholar 

  47. Liu T, Wang L, Liu X, Sun C, Lv Y, Miao R, Wang X (2020) Dynamic photocatalytic membrane coated with ZnIn2S4 for enhanced photocatalytic performance and antifouling property. Chem Eng J 379:25–26

    Article  Google Scholar 

  48. Yunos MZ, Harun Z, Basri H, Ismail AF (2014) Studies on fouling by natural organic matter (NOM) on polysulfone membranes: effect of polyethylene glycol (PEG). Desalination 333(1):36–44

    Article  CAS  Google Scholar 

  49. Zhao S, Wang Z, Wei X, Zhao B, Wang J, Yang S, Wang S (2011) Performance improvement of polysulfone ultrafiltration membrane using PANiEB as both pore forming agent and hydrophilic modifier. J Membr Sci 385:251–262

    Article  Google Scholar 

  50. He P, Wright IJ, Zhu S, Onoda Y, Liu H, Li R, Liu X, Hua L, Oyanoghafo OO, Ye Q (2019) Leaf mechanical strength and photosynthetic capacity vary independently across 57 subtropical forest species with contrasting light requirements. New Phytol 223(2):607–618

    Article  CAS  PubMed  Google Scholar 

  51. Wang D, Xiao L, Luo Q, Li X, An J, Duan Y (2011) Highly efficient visible light TiO2 photocatalyst prepared by sol–gel method at temperatures lower than 300 °C. J Hazard Mater 192(1):150–159

    Article  CAS  PubMed  Google Scholar 

  52. Rovani S, Santos JJ, Guilhen SN, Corio P, Fungaro DA (2020) Fast, efficient and clean adsorption of bisphenol-A using renewable mesoporous silica nanoparticles from sugarcane waste ash. RSC Adv 10(46):27706–27712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dzinun H, Othman MHD, Ismail AF, Puteh MH, Rahman MA, Jaafar J (2015) Fabrication of dual layer hollow fibre membranes for photocatalytic degradation of organic pollutants. Int J Chem Eng Appl 6(4):28

    Google Scholar 

  54. Akbari R, Mohammadizadeh MR, Khajeh Aminian M, Abbasnejad M (2019) Hydrophobic Cu2O surfaces prepared by chemical bath deposition method. Appl Phys A 125:1–7

    Article  Google Scholar 

  55. Gopalram K, Kapoor A, Kumar PS, Sunil A, Rangasamy G (2023) MXenes and MXene-based materials for removal and detection of water contaminants: a review. Ind Eng Chem Res 62(17):6559–6583

    Article  CAS  Google Scholar 

  56. Qavi S, Lindsay AP, Firestone MA, Foudazi R (2019) Ultrafiltration membranes from polymerization of self-assembled Pluronic block copolymer mesophases. J Membr Sci 580:125–133

    Article  CAS  Google Scholar 

  57. Nghiem LD, Hawkes S (2007) Effects of membrane fouling on the nanofiltration of pharmaceutically active compounds (PhACs): mechanisms and role of membrane pore size. Sep Purif Technol 57(1):176–184

    Article  CAS  Google Scholar 

  58. Ahmad AL, Abdulkarim AA, Ooi BS, Ismail S (2013) Recent development in additives modifications of polyethersulfone membrane for flux enhancement. Chem Eng J 223:246–267

    Article  CAS  Google Scholar 

  59. Zheng L, Zhang W, Xiao X (2016) Preparation of titanium dioxide/tungsten disulfide composite photocatalysts with enhanced photocatalytic activity under visible light. Korean J Chem Eng 33:107–113

    Article  CAS  Google Scholar 

  60. Thiehmed Z (2022) Preparation of WS2/TiO2 nanostructures for photocatalytic applications, In: Master's thesis, p 31

  61. Lyu LM, Hsiao KY, Lin CY, Tseng YH, Chang YC, Lu MY (2023) WS2–TiO2 hetero-photocatalysts for efficient hydrogen evolution via plasmon-induced resonance energy transfer. Int J Hydrogen Energy 48(76):29604–29614

    Article  CAS  Google Scholar 

  62. Nasrollahi N, Ghalamchi L, Vatanpour V, Khataee A (2021) Photocatalytic-membrane technology: a critical review for membrane fouling mitigation. J Ind Eng Chem 93:101–116

    Article  CAS  Google Scholar 

  63. Zhang P, Wang T, Chang X, Gong J (2016) Effective charge carrier utilization in photocatalytic conversions. Acc Chem Res 49(5):911–921

    Article  CAS  PubMed  Google Scholar 

  64. Wang H, Li M, Hu J, Wang C, Xu S, Han CC (2013) Multiple targeted drugs carrying biodegradable membrane barrier: anti-adhesion, hemostasis, and anti-infection. Biomacromol 14(4):954–961

    Article  CAS  Google Scholar 

  65. Kumar SG, Rao KK (2017) Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO). Appl Surf Sci 391:124–148

    Article  CAS  Google Scholar 

  66. Janssens R, Hainaut R, Gillard J, Dailly H, Luis P (2021) Performance of a slurry photocatalytic membrane reactor for the treatment of real secondary wastewater effluent polluted by anticancer drugs. Ind Eng Chem Res 60(5):2223–2231

    Article  CAS  Google Scholar 

  67. Binjhade R, Mondal R, Mondal S (2022) Continuous photocatalytic reactor: Critical review on the design and performance. J Environ Chem Eng 10(3):107746

    Article  CAS  Google Scholar 

  68. Zangeneh H, Zinatizadeh AAL, Habibi M, Akia M, Isa MH (2015) Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review. J Ind Eng Chem 26:1–36

    Article  CAS  Google Scholar 

  69. Abdi G, Shekh MI, Amirian J, Alizadeh A, Zinadini S (2021) Photocatalytic membranes in degradation of organic molecules. Photocatal Adv Mater React Eng 100:1–56

    CAS  Google Scholar 

  70. Chin SS, Lim TM, Chiang K, Fane AG (2007) Hybrid low-pressure submerged membrane photoreactor for the removal of bisphenol A. Desalination 202(1–3):253–261

    Article  CAS  Google Scholar 

  71. Simsek EB (2017) Solvothermal synthesized boron doped TiO2 catalysts: photocatalytic degradation of endocrine disrupting compounds and pharmaceuticals under visible light irradiation. Appl Catal B 200:309–322

    Article  Google Scholar 

  72. Hube S, Eskafi M, Hrafnkelsdóttir KF, Bjarnadóttir B, Bjarnadóttir MÁ, Axelsdóttir S, Wu B (2020) Direct membrane filtration for wastewater treatment and resource recovery: a review. Sci Total Environ 710:26

    Article  Google Scholar 

  73. Huang YJ, Lyu LM, Lin CY, Lee GC, Hsiao KY, Lu MY (2022) Improved mass-transfer enhances photo-driven dye degradation and H2 evolution over a few-layer WS2/ZnO heterostructure. ACS Omega 7(2):2217–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771):242–246

    Article  CAS  PubMed  Google Scholar 

  75. Siddiqui MU, Arif AFM, Bashmal S (2016) Permeability-selectivity analysis of microfiltration and ultrafiltration membranes: effect of pore size and shape distribution and membrane stretching. Membranes 6(3):16

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ministry of Higher Education Malaysia for the funding through the Fundamental Research Grant Scheme (Project Number: FRGS/1/2023/TK05/UTM/01/2 or R.J130000.7809.5F669). The authors also gratefully acknowledge the financial support from the National Water Research Institute of Malaysia (NAHRIM) under Contract Research (Project Number: R.J130000.7609.4C497). Special acknowledgement should also be mentioned to Universiti Teknologi Malaysia for the research grant, namely the UTM Fundamental Research (UTMFR) (Project number: Q.J130000.3809.22H07) and UTM PDRU Grant (Project number: Q.J130000.21A2.06E21). The authors would also like to thank the Research Management Centre, Universiti Teknologi Malaysia, for technical support.

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript. NI, HZ, SB and MM have conducted the experiment and wrote the original article. MO and MP have edited the text and reviewed the manuscript. JJ and NH have proofread the manuscript. NK and NY have given critical comments and aided in the development of the research, and manuscript.

Corresponding author

Correspondence to Mohd Hafiz Dzarfan Othman.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This research does not include experiments involving human tissue and does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, N.J., Othman, M.H.D., Zakria, H.S. et al. Improved visible light-responsive bisphenol A photodegradation utilizing TiO2/WS2 photocatalytic membranes with energy storage ability. J Mater Sci 59, 12361��12383 (2024). https://doi.org/10.1007/s10853-024-09880-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09880-2

Navigation