Skip to main content
Log in

Effect of varied initial dislocation densities on the anisotropic behavior of creep-aging in Al–Cu–Li alloy

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Accurate forming predictions for the third-generation Al–Cu–Li alloys challenged by anisotropic creep-aging (CA) behavior. The creep-aging anisotropic behavior of Al–Cu–Li alloys with different initial dislocation densities is not clear. The anisotropy of creep behavior and yield strength in Al–Cu–Li alloy under high dislocation density (T3) and low dislocation density (T4) conditions have been experimentally investigated. The results show that the in-plane anisotropy (IPA) of creep strain decreased from 59.3% and 50.2% to 7.2% and 8.3% for T4 and T3 samples, respectively. It is found that the T1 phase significantly suppresses the anisotropy of creep strain, the faster the precipitation rate of the T1 phase, the more diffuse the distribution of the inhibitory effect is more obvious, the T1 phase inhomogeneous coarsening of the creep strain inhibition effect is slightly weakened. The yield strength IPA of T4 and T3 samples decreased from 6.88% and 19.47% to 5.66% and 6.41%, respectively. The higher initial dislocation density promotes a uniform and diffuse distribution of the T1 phase, which greatly suppresses the yield strength anisotropy. Different initial dislocation densities lead to different precipitation behaviors of the T1 phase, which should be responsible for the difference in the anisotropy of CA behavior, as is the yield strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

Data availability

The authors do not have permission to share data.

References

  1. Gumbmann E, De Geuser F, Sigli C, Deschamps A (2017) Influence of Mg, Ag and Zn minor solute additions on the precipitation kinetics and strengthening of an Al–Cu–Li alloy. Acta Mater 133:172–185. https://doi.org/10.1016/j.actamat.2017.05.029

    Article  CAS  Google Scholar 

  2. Ma J, Liu X, Yan D, Rong L (2023) A novel GP-Li precursor and the correlated precipitation behaviors in Al–Cu–Li alloys with different Cu/Li ratio. Acta Mater 243:118442. https://doi.org/10.1016/j.actamat.2022.118442

    Article  CAS  Google Scholar 

  3. Donnadieu P, Shao Y, De Geuser F et al (2011) Atomic structure of T1 precipitates in Al–Li–Cu alloys revisited with HAADF-STEM imaging and small-angle X-ray scattering. Acta Mater 59:462–472. https://doi.org/10.1016/j.actamat.2010.09.044

    Article  CAS  Google Scholar 

  4. Li Y, Shi Z, Lin J et al (2016) Experimental investigation of tension and compression creep-ageing behaviour of AA2050 with different initial tempers. Mater Sci Eng A 657:299–308. https://doi.org/10.1016/j.msea.2016.01.074

    Article  CAS  Google Scholar 

  5. Lin J, Ho KC, Dean TA (2006) An integrated process for modelling of precipitation hardening and springback in creep age-forming. Int J Mach Tools Manuf 46:1266–1270. https://doi.org/10.1016/j.ijmachtools.2006.01.026

    Article  Google Scholar 

  6. Liu C, Yang J, Ma P et al (2020) Large creep formability and strength–ductility synergy enabled by engineering dislocations in aluminum alloys. Int J Plast 134:102774. https://doi.org/10.1016/j.ijplas.2020.102774

    Article  CAS  Google Scholar 

  7. Zhou C, Zhan L, Liu C, Huang M (2023) Dislocation density-mediated creep ageing behavior of an Al–Cu–Li alloy. J Mater Sci Technol 174:204–217. https://doi.org/10.1016/j.jmst.2023.08.011

    Article  CAS  Google Scholar 

  8. Ma Z, Zhan L, Liu C et al (2018) Stress-level-dependency and bimodal precipitation behaviors during creep ageing of Al–Cu alloy: experiments and modeling. Int J Plast 110:183–201. https://doi.org/10.1016/j.ijplas.2018.07.001

    Article  CAS  Google Scholar 

  9. Sondhi SK, Dyson BF, Mclean M (2004) Tension–compression creep asymmetry in a turbine disc superalloy: roles of internal stress and thermal ageing. Acta Mater 52:1761–1772. https://doi.org/10.1016/j.actamat.2003.12.017

    Article  CAS  Google Scholar 

  10. Xu L, Zhan L, Xu Y et al (2021) Thermomechanical pretreatment of Al–Zn–Mg–Cu alloy to improve formability and performance during creep-age forming. J Mater Process Technol 293:117089. https://doi.org/10.1016/j.jmatprotec.2021.117089

    Article  CAS  Google Scholar 

  11. Wang X, Shi Z, Sun C, Lin J (2023) Investigation of anisotropy evolution of an aluminium–lithium alloy with increasing pre-deformation in creep age forming. Mater Charact 206:1–14. https://doi.org/10.1016/j.matchar.2023.113378

    Article  CAS  Google Scholar 

  12. Hu L, Zhan L, Liu Z et al (2017) The effects of pre-deformation on the creep aging behavior and mechanical properties of Al–Li–S4 alloys. Mater Sci Eng A 703:496–502. https://doi.org/10.1016/j.msea.2017.07.068

    Article  CAS  Google Scholar 

  13. Peng HY, Xie HZ, Bai XS et al (2021) Influence of heat treatment on the anisotropic mechanical behavior of 2198 Al–Li alloy sheet. Rare Met Mater Eng 50:1398–1404

    CAS  Google Scholar 

  14. Liu T-L, Li H-R, Ma Y-L et al (2023) Investigation of anisotropy and structure variation of spray-formed 2195 Al–Li alloy via final temperature-controlled rolling and cold rolling. J Alloys Compd 937:168414. https://doi.org/10.1016/j.jallcom.2022.168414

    Article  CAS  Google Scholar 

  15. Shen F, Yi D, Wang B et al (2016) Semi-quantitative evaluation of texture components and anisotropy of the yield strength in 2524 T3 alloy sheets. Mater Sci Eng A 675:386–395. https://doi.org/10.1016/j.msea.2016.08.013

    Article  CAS  Google Scholar 

  16. Peng N, Zhan L, Xu Y et al (2022) Anisotropy in creep-aging behavior of Al–Li alloy under different stress levels: experimental and constitutive modeling. J Mater Res Technol 20:3456–3470. https://doi.org/10.1016/j.jmrt.2022.08.046

    Article  CAS  Google Scholar 

  17. Bian TJ, Li H, Yang JC et al (2020) Through-thickness heterogeneity and in-plane anisotropy in creep aging of 7050 Al alloy. Mater Des 196:1–15. https://doi.org/10.1016/j.matdes.2020.109190

    Article  CAS  Google Scholar 

  18. Xu Y, Zhan L, Huang M et al (2018) Anisotropy in creep-ageing behavior of textured Al–Cu–Mg alloy. Int J Lightweight Mater Manuf 1:40–46. https://doi.org/10.1016/j.ijlmm.2018.03.001

    Article  Google Scholar 

  19. Chen X, Zhan L, Xu Y et al (2020) Anisotropy in creep ageing behavior of textured Al–Cu alloy under different stress states. Mater Charact 168:110539. https://doi.org/10.1016/j.matchar.2020.110539

    Article  CAS  Google Scholar 

  20. Chen L, Liu C, Ma P et al (2022) Strong in-plane anisotropy of creep ageing behavior in largely pre-deformed Al–Cu alloy: experiments and constitutive modeling. Int J Plast 152:103245. https://doi.org/10.1016/j.ijplas.2022.103245

    Article  CAS  Google Scholar 

  21. Wu CH, Li H, Lei C et al (2023) Origin and effect of anisotropy in creep aging behavior of Al–Cu–Li alloy. J Mater Res Technol 26:3368–3382. https://doi.org/10.1016/j.jmrt.2023.08.159

    Article  CAS  Google Scholar 

  22. Zhang H, Li H, Peng W et al (2023) Effect of applied stress level on anisotropy in creep-aging behavior of Al–Cu–Li alloy. J Mater Res Technol 27:4390–4402. https://doi.org/10.1016/j.jmrt.2023.10.301

    Article  CAS  Google Scholar 

  23. Xiang S, Zhang X (2019) Dislocation structure evolution under electroplastic effect. Mater Sci Eng A 761:138026. https://doi.org/10.1016/j.msea.2019.138026

    Article  CAS  Google Scholar 

  24. Chen K, Zhan L, Xu Y et al (2022) Optimizing strength and ductility in 7150 Al alloys via rapid electropulsing cyclic heat treatment. J Alloys Compd 903:163985. https://doi.org/10.1016/j.jallcom.2022.163985

    Article  CAS  Google Scholar 

  25. Chen X, Zhan L, Ma Z et al (2020) Study on tensile/compressive asymmetry in creep ageing behavior of Al–Cu alloy under different stress levels. J Alloys Compd 843:156157. https://doi.org/10.1016/j.jallcom.2020.156157

    Article  CAS  Google Scholar 

  26. Xia F, Zhan L, Liao H et al (2023) Effect of different pre-treatments on anisotropy in stress relaxation aging behavior of AA2195 alloy. Mater Charact 196:112610. https://doi.org/10.1016/j.matchar.2022.112610

    Article  CAS  Google Scholar 

  27. Chen X, Zhao G, Xu X, Wang Y (2021) Effects of heat treatment on the microstructure, texture and mechanical property anisotropy of extruded 2196 Al–Cu–Li alloy. J Alloys Compd 862:158102. https://doi.org/10.1016/j.jallcom.2020.158102

    Article  CAS  Google Scholar 

  28. Xu X, Hao M, Chen J et al (2022) Influence of microstructural and crystallographic inhomogeneity on tensile anisotropy in thick-section Al–Li–Cu–Mg plates. Mater Sci Eng A Struct Mater Prop Microstruct Process 829:142135. https://doi.org/10.1016/j.msea.2021.142135

    Article  CAS  Google Scholar 

  29. Hu L, Zhan L, Shen R et al (2017) Effects of uniaxial creep ageing on the mechanical properties and micro precipitates of Al–Li–S4 alloy. Mater Sci Eng A 688:272–279. https://doi.org/10.1016/j.msea.2017.01.081

    Article  CAS  Google Scholar 

  30. Tian-Zhang Z, Long J, Yong X, Shi-Hong Z (2020) Anisotropic yielding stress of 2198 Al–Li alloy sheet and mechanisms. Mater Sci Eng A 771:138572. https://doi.org/10.1016/j.msea.2019.138572

    Article  CAS  Google Scholar 

  31. Zhang J, Jiang Z, Xu F, Chen M (2019) Effects of pre-stretching on creep behavior, mechanical property and microstructure in creep aging of Al–Cu–Li alloy. Materials (Basel) 12:333. https://doi.org/10.3390/ma12030333

    Article  CAS  PubMed  Google Scholar 

  32. Ma P, Zhan L, Liu C et al (2019) Pre-strain-dependent natural ageing and its effect on subsequent artificial ageing of an Al–Cu–Li alloy. J Alloys Compd 790:8–19. https://doi.org/10.1016/j.jallcom.2019.03.072

    Article  CAS  Google Scholar 

  33. Rodgers BI, Prangnell PB (2016) Quantification of the influence of increased pre-stretching on microstructure–strength relationships in the Al–Cu–Li alloy AA2195. Acta Mater 108:55–67. https://doi.org/10.1016/j.actamat.2016.02.017

    Article  CAS  Google Scholar 

  34. Yang S, Liu L, Gao F et al (2021) Evolution of texture and precipitates in Al–Cu–Li alloy during deformation and heat treatment and its effect on anisotropy. Mater Res Express 8:1–11. https://doi.org/10.1088/2053-1591/abfd5f

    Article  CAS  Google Scholar 

  35. Ma Y, Xia F, Zhan L, Xu Y (2019) Study on multi-step creep aging behavior of Al–Li–S4 alloy. Metals 9:1–13. https://doi.org/10.3390/met9070807

    Article  CAS  Google Scholar 

  36. Decreus B, Deschamps A, De Geuser F, Sigli C (2013) Influence of natural ageing and deformation on precipitation in an Al–Cu–Li alloy. Adv Eng Mater 15:1082–1085. https://doi.org/10.1002/adem.201300098

    Article  CAS  Google Scholar 

  37. Li J-F, Huang J-L, Liu D-Y et al (2019) Distribution and evolution of aging precipitates in Al–Cu–Li alloy with high Li concentration. Trans Nonferr Met Soc China 29:15–24. https://doi.org/10.1016/s1003-6326(18)64910-6

    Article  CAS  Google Scholar 

  38. Zeng G-J, Ning H, Deng S-X et al (2022) Quantification of the effect of increased pre-deformation on microstructure and mechanical properties of 2A55 Al–Li alloy. Adv Eng Mater 24:1–16. https://doi.org/10.1002/adem.202200033

    Article  CAS  Google Scholar 

  39. Ma P, Liu C, Chen Q et al (2020) Natural-ageing-enhanced precipitation near grain boundaries in high-strength aluminum alloy. J Mater Sci Technol 46:107–113. https://doi.org/10.1016/j.jmst.2019.11.035

    Article  CAS  Google Scholar 

  40. Wu CH, Li H, Bian TJ et al (2023) Effect of natural aging on formability and properties of Al–Cu–Li alloy during creep age forming. Mater Today Commun 36:106633. https://doi.org/10.1016/j.mtcomm.2023.106633

    Article  CAS  Google Scholar 

  41. Deng S-X, Liu Z-Z, Zeng G-J et al (2024) The precipitation evolution and mechanical properties of an Al–Cu–Li–Mg alloy during natural aging. J Mater Sci Technol 192:42–53. https://doi.org/10.1016/j.jmst.2023.12.050

    Article  Google Scholar 

  42. Chen D, Zhang Y, Zhang Z et al (2022) Study on the three-dimensional tensile creep anisotropy of a hot-rolled Mg–0.9Mn–1.5Ce alloy sheet. J Alloys Compd 901:163655. https://doi.org/10.1016/j.jallcom.2022.163655

    Article  CAS  Google Scholar 

  43. Ciemiorek M, Chrominski W, Olejnik L, Lewandowska M (2017) Evaluation of mechanical properties and anisotropy of ultra-fine grained 1050 aluminum sheets produced by incremental ECAP. Mater Des 130:392–402. https://doi.org/10.1016/j.matdes.2017.05.069

    Article  CAS  Google Scholar 

  44. Fazily P, Yoon JW (2023) Machine learning-driven stress integration method for anisotropic plasticity in sheet metal forming. Int J Plast 166:103642. https://doi.org/10.1016/j.ijplas.2023.103642

    Article  Google Scholar 

  45. Kohar CP, Brahme A, Imbert J et al (2017) Effects of coupling anisotropic yield functions with the optimization process of extruded aluminum front rail geometries in crashworthiness. Int J Solids Struct 128:174–198. https://doi.org/10.1016/j.ijsolstr.2017.08.026

    Article  Google Scholar 

  46. Suresh M, Kalsar R, More AM et al (2021) Evolution of microstructure and texture in the third generation Al–Li alloy AA2195 during warm hybrid processing. J Alloys Compd 855:156750. https://doi.org/10.1016/j.jallcom.2020.156750

    Article  CAS  Google Scholar 

  47. Deng Y, Bai J, Wu X et al (2017) Investigation on formation mechanism of T1 precipitate in an Al–Cu–Li alloy. J Alloys Compd 723:661–666. https://doi.org/10.1016/j.jallcom.2017.06.198

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (Nos. U22A20190 and 52175373), National Natural Science Foundation Joint Fund Key Support Project (U2341273), and the Science and Technology Innovation Program of Hunan Province (2020RC4001).

Author information

Authors and Affiliations

Authors

Contributions

Shengmeng Hui worked in investigation, data curation, and writing—original draft. Lihua Zhan helped in funding acquisition, supervision, and writing—review and editing. Yongqian Xu worked in investigation and formal analysis. Bolin Ma worked in investigation and data curation. Chang Zhou helped in investigation and methodology. Jingpeng Feng helped in investigation and performing experiments. Min Xie helped in investigation and methodology. Tong Feng helped in investigation and experimental equipment.

Corresponding author

Correspondence to Lihua Zhan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Zhao Shen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, S., Zhan, L., Xu, Y. et al. Effect of varied initial dislocation densities on the anisotropic behavior of creep-aging in Al–Cu–Li alloy. J Mater Sci 59, 12661–12676 (2024). https://doi.org/10.1007/s10853-024-09870-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09870-4

Navigation