Skip to main content
Log in

Zirconium tungstate (Zr4W8O32)-doped zirconium dioxide (ZrO2) for gamma ray shielding: an in-depth examination of fabrication, characterizations, and gamma ray attenuation properties

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The current work aims to synthesize new zirconium tungstate (Zr4W8O32)-doped ZrO2 composites for radiation shielding applications using the hydrothermal reaction process. The characterization of the synthesized composites was proved using various analysis techniques including X-ray diffraction, scanning electron microscope, transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy. The density of the synthesized Zr4W8O32-doped ZrO2 composites reduced between 5.15 and 4.98 g/cm3, with raising the W concentration between 13 and 28 wt%. Additionally, the average crystallite size proved by TEM analysis was determined as 27.7 nm and 33.2 nm, respectively, for composites ZW-1 and ZW-2. Furthermore, the Monte Carlo N-particle transport code (version-5) was applied to estimate the gamma ray shielding properties of the synthesized zirconium tungstate (Zr4W8O32)-doped ZrO2 composites. The linear attenuation coefficient for the synthesized composites showed variation between 104.50 and 0.200 cm−1 (for ZW-1 composite) and 92.35 and 0.196 cm−1 (for ZW-2 composite) when the gamma photon increased between 0.033 and 2.506 MeV. Therefore, the radiation protection efficiency for a 3 cm thickness of the synthesized composites reaches 54.27% and 53.57% for samples ZW-1 and ZW-2, respectively. As a result, the fabricated composites can be used to produce ceramics with high shielding properties to be used in radiation shielding applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Dervić K, Šinik V, Despotović Ž (2019) Basics of electromagnetic radiation. In: IX international conference industrial engineering and environmental protection, 2019

  2. Carlsten BE, Colestock PL, Cunningham GS, Delzanno GL, Dors EE, Holloway MA, Jeffery CA, Lewellen JW, Marksteiner QR, Nguyen DC (2019) Radiation-belt remediation using space-based antennas and electron beams. IEEE Trans Plasma Sci 47(5):2045–2063

    Article  CAS  Google Scholar 

  3. National Research Council Division on Engineering, Physical Sciences, Committee on Science, & Technology for Countering Terrorism (2002) Making the nation safer: The role of science and technology in countering terrorism. National Academies Press, Washington, D.C.

    Google Scholar 

  4. Wang X-X, Zheng Q, Zheng Y-J, Cao M-S (2023) Green EMI shielding: dielectric/magnetic “genes” and design philosophy. Carbon 206:124–141

    Article  CAS  Google Scholar 

  5. Alagona P, Carruthers J, Chen H, Dagenais M, e Silva SD, Fitzgerald G, Hou S, Jørgensen D, Leal C, McNeill J, Mitman G (2020) Reflections: environmental history in the era of COVID-19. Environ Hist 25(4):595–686

    Article  Google Scholar 

  6. Belli M, Tabocchini MA (2020) Ionizing radiation-induced epigenetic modifications and their relevance to radiation protection. Int J Mol Sci 21(17):5993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Helm JS, Rudel RA (2020) Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 94(5):1511–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. De Santis M, Cesari E, Nobili E, Straface G, Cavaliere AF, Caruso A (2007) Radiation effects on development. Birth Defects Res Part C Embryo Today Rev 81(3):177–182

    Article  Google Scholar 

  9. Langlois L (2013) IAEA Action Plan on nuclear safety. Energy Strategy Rev 1(4):302–306

    Article  Google Scholar 

  10. Jones CG (2019) The US Nuclear Regulatory Commission radiation protection policy and opportunities for the future. J Radiol Prot 39(4):R51–R62

    Article  PubMed  Google Scholar 

  11. C.N.S. Commission (2024) Canadian Nuclear Safety Commission (CNSC). Annual report 2021–22

  12. Akl ZF (2016) A proposed regulatory requirements and licensing process for physical protection systems of nuclear facilities in Egypt. J Phys Secur 9(1):78–91

    Google Scholar 

  13. Thomassin J-M, Jérôme C, Pardoen T, Bailly C, Huynen I, Detrembleur C (2013) Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater Sci Eng R Rep 74(7):211–232

    Article  Google Scholar 

  14. Hemath M, Mavinkere Rangappa S, Kushvaha V, Dhakal HN, Siengchin S (2020) A comprehensive review on mechanical, electromagnetic radiation shielding, and thermal conductivity of fibers/inorganic fillers reinforced hybrid polymer composites. Polym Compos 41(10):3940–3965

    Article  CAS  Google Scholar 

  15. Rajak DK, Pagar DD, Kumar R, Pruncu CI (2019) Recent progress of reinforcement materials: a comprehensive overview of composite materials. J Market Res Technol 8(6):6354–6374

    CAS  Google Scholar 

  16. Krasheninnikov A, Nordlund K, Keinonen J (2002) Production of defects in supported carbon nanotubes under ion irradiation. Phys Rev B 65(16):165423

    Article  Google Scholar 

  17. Al-Mamun M, Chen J, Burda M, Koziol KK (2023) Phase and orientation effects in X-ray attenuation of carbonaceous epoxy composites. Mater Chem Phys 309:128318

    Article  CAS  Google Scholar 

  18. Verma S, Sarma B, Chaturvedi K, Malvi D, Srivastava AK (2023) Emerging graphene and carbon nanotube-based carbon composites as radiations shielding materials for X-rays and gamma rays: a review. Compos Interfaces 30(2):223–251

    Article  CAS  Google Scholar 

  19. Yao L, Wang Y, Zhao J, Zhu Y, Cao M (2023) Multifunctional nanocrystalline-assembled porous hierarchical material and device for integrating microwave absorption, electromagnetic interference shielding, and energy storage. Small 19(25):2208101

    Article  CAS  Google Scholar 

  20. Ince J, Peerzada M, Mathews L, Pai A, Al-qatatsheh A, Abbasi S, Yin Y, Hameed N, Duffy A, Lau A (2023) Overview of emerging hybrid and composite materials for space applications. Adv Compos Hybrid Mater 6(4):130

    Article  Google Scholar 

  21. Dassan EGB, Rahman AAA, Abidin MSZ, Akil HM (2020) Carbon nanotube–reinforced polymer composite for electromagnetic interference application: a review. Nanotechnol Rev 9(1):768–788

    Article  CAS  Google Scholar 

  22. Darwish AA, Hassan MH, Abou Mandour MA, Maarouf AA (2019) Mechanical properties of defective double-walled boron nitride nanotubes for radiation shielding applications: a computational study. Comput Mater Sci 156:142–147

    Article  CAS  Google Scholar 

  23. Ghazizadeh M, Estevez JE, Kelkar AD (2015) Boron nitride nanotubes for space radiation shielding. Int J Nano Stud Technol 4:1–2

    Article  Google Scholar 

  24. Jakubinek MB, Kim KS, Kim MJ, Martí AA, Pasquali M (2022) Recent advances and perspective on boron nitride nanotubes: from synthesis to applications. J Mater Res 37(24):4403–4418

    Article  CAS  Google Scholar 

  25. Yanar N, Yang E, Park H, Son M, Choi H (2020) Boron nitride nanotube (BNNT) membranes for energy and environmental applications. Membranes 10(12):430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim JH, Pham TV, Hwang JH, Kim CS, Kim MJ (2018) Boron nitride nanotubes: synthesis and applications. Nano Convergence 5(1):17

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hallad SA, Banapurmath NR, Bhadrakali AS, Patil AY, Hunashyal AM, Ganachari SV, Khan TMY, Badruddin IA, Soudagar MEM, Kamangar S (2022) Nanoceramic composites for nuclear radiation attenuation. Materials 15(1):262

    Article  CAS  Google Scholar 

  28. Hannachi E, Sayyed MI, Slimani Y, Elsafi M (2022) Experimental investigation on the physical properties and radiation shielding efficiency of YBa2Cu3Oy/M@M3O4 (M = Co, Mn) ceramic composites. J Alloy Compd 904:164056

    Article  CAS  Google Scholar 

  29. Elsafi M, Dib MF, Mustafa HE, Sayyed MI, Khandaker MU, Alsubaie A, Almalki ASA, Abbas MI, El-Khatib AM (2021) Enhancement of ceramics based red-clay by bulk and nano metal oxides for photon shielding features. Materials 14(24):7878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alhindawy IG, Gamal H, Almuqrin AH, Sayyed MI, Mahmoud KA (2023) Impacts of the calcination temperature on the structural and radiation shielding properties of the NASICON compound synthesized from zircon minerals. Nucl Eng Technol 55(5):1885–1891

    Article  CAS  Google Scholar 

  31. Eldoma MA, Zouli N, Elawadi GA, Mahmoud MA, Qudsieh IY, Bakather OY, Hassan M, Alomar MS, Abouatiaa AFF, Hegazi SEF, Elsheikh YA, Mahmoud KA, Alhindawy IG (2024) Utilizing a one-step hydrothermal method for fabrication and evaluation of radiation shielding characteristics in Pb(ZrO3)-doped zirconia: synthesis and characterization. J Mater Sci 59(8):3253–3269. https://doi.org/10.1007/s10853-024-09419-5

    Article  CAS  Google Scholar 

  32. Alhindawy IG, Marashdeh MW, Aljaafreh MJ, Al-Hmoud M, Alanazi S, Mahmoud K (2024) Advanced radiation shielding materials: PbO2-doped zirconia ceramics synthesized through innovative sol-gel method. Nucl Eng Technol. https://doi.org/10.1016/j.net.2024.02.001

    Article  Google Scholar 

  33. Mahmoud KA, Binmujlli M, Marashdeh M, Sayyed MI, Aljaafreh MJ, Akhdar H, Alhindawy IG (2024) Comprehensive analysis of the effects of Mo and Co on the synthesis, structural, and radiation-shielding properties of TiO2 based composites. Prog Nucl Energy 169:105105

    Article  CAS  Google Scholar 

  34. Usta M, Tozar A (2020) The effect of the ceramic amount on the radiation shielding properties of metal-matrix composite coatings. Radiat Phys Chem 177:109086

    Article  CAS  Google Scholar 

  35. Ayyıldız S, Soylu EH, Özen J, İde S, Kamburoğlu K (2015) A nanocomposite shield constructed for protection against the harmful effects of dental X-rays. J Dent 12(5):364

    Google Scholar 

  36. Nikeghbal K, Zamanian Z, Shahidi S, Spagnuolo G, Soltani P (2020) Designing and fabricating nano-structured and micro-structured radiation shields for protection against CBCT exposure. Materials 13(19):4371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bawazeer O, Makkawi K, Aga ZB, Albakri H, Assiri N, Althagafy K, Ajlouni AW (2023) A review on using nanocomposites as shielding materials against ionizing radiation. J Umm Al-Qura Univ Appl Sci 9(3):325–340

    Article  Google Scholar 

  38. Ghrib T, Mhareb MHA, Sayyed MI, Alajerami YSM, Dwaikat N, Ben Ali A, Gondal MA (2021) Structural, optical and radiation shielding properties of zirconium–titanium–thallium ternary oxide (0.5ZrO2-(0.5-x)TiO2-xTl2O3). Ceram Int 47(15):21837–21847

    Article  CAS  Google Scholar 

  39. More CV, Alsayed Z, Badawi MS, Thabet AA, Pawar PP (2021) Polymeric composite materials for radiation shielding: a review. Environ Chem Lett 19(3):2057–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kobayashi S, Hosoda N, Takashima R (1997) Tungsten alloys as radiation protection materials. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 390(3):426–430

    Article  CAS  Google Scholar 

  41. Adlienė D, Gilys L, Griškonis E (2020) Development and characterization of new tungsten and tantalum containing composites for radiation shielding in medicine. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 467:21–26

    Article  Google Scholar 

  42. AbuAlRoos NJ, Amin NAB, Zainon R (2019) Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: a review. Radiat Phys Chem 165:108439

    Article  CAS  Google Scholar 

  43. Naydenov SV, Ryzhikov VD, Onyshchenko GM, Smith CF (2020) Chapter 12 - Advanced multilayer composite structures for fast neutron detection and shielding protection applications. In: Abdulrahman ST, Thomas S, Ahmad Z (eds) Micro and nanostructured composite materials for neutron shielding applications. Woodhead Publishing, Sawston, pp 317–354

    Chapter  Google Scholar 

  44. Zhu Y, Liu T, Li L, Cao M (2024) Multifunctional WSe2/Co3C composite for efficient electromagnetic absorption, EMI shielding, and energy conversion. Nano Res 17(3):1655–1665

    Article  CAS  Google Scholar 

  45. Ahmadi M, Tabary SB, Rahmatabadi D, Ebrahimi M, Abrinia K, Hashemi R (2022) Review of selective laser melting of magnesium alloys: Advantages, microstructure and mechanical characterizations, defects, challenges, and applications. J Mater Res Technol 19:1537–1562

    Article  CAS  Google Scholar 

  46. Wang H, Wu Y, He L, Liu Z (2012) Supporting tungsten oxide on zirconia by hydrothermal and impregnation methods and its use as a catalyst to reduce the viscosity of heavy crude oil. Energy Fuels 26(11):6518–6527

    Article  CAS  Google Scholar 

  47. Ji W, Hu J, Chen Y (1998) The structure and surface acidity of zirconia-supported tungsten oxides. Catal Lett 53(1):15–21

    Article  CAS  Google Scholar 

  48. Vartuli JC, Santiesteban JG, Traverso P, Cardona-Martinéz N, Chang CD, Stevenson SA (1999) Characterization of the acid properties of tungsten/zirconia catalysts using adsorption microcalorimetry and n-pentane isomerization activity. J Catal 187(1):131–138

    Article  CAS  Google Scholar 

  49. Li Z-B, Zhang H, Zhang G-H, Chou K-C (2022) Superior strength-ductility synergy in a novel tailored Zr-based particle-strengthened medium W content alloys. Compos B Eng 236:109817

    Article  CAS  Google Scholar 

  50. Marin-Flores OG, Karim AM, Wang Y (2014) Role of tungsten in the aqueous phase hydrodeoxygenation of ethylene glycol on tungstated zirconia supported palladium. Catal Today 237:118–124

    Article  CAS  Google Scholar 

  51. Alhindawy IG, Elshehy EA, El-Khouly ME, Abdel-Monem YK, Atrees MS (2019) Fabrication of mesoporous NaZrP cation-exchanger for U(VI) ions separation from uranyl leach liquors. Colloids Interfaces 3(4):61

    Article  CAS  Google Scholar 

  52. Mahmoud KA, Sayyed MI, Almuqrin AH, Elhelaly MA, Alhindawy IG (2023) Synthesis of glass powders for radiation shielding applications based on zirconium minerals’ leach liquor. Radiat Phys Chem 207:110867

    Article  CAS  Google Scholar 

  53. El-Magied MOA, Fatah AILAE, Mashaal H, Tawfique A, Alhindawy IG, Manaa ESA, Elshehy EA (2022) Fabrication of worm-like mesoporous silica monoliths as an efficient sorbent for thorium ions from nitrate media. Radiochemistry 64(1):62–73

    Article  CAS  Google Scholar 

  54. Elzoghby AA, Haggag ESA, Roshdy OE, Alhindawy IG, Masoud AM (2023) Kaolinite/thiourea-formaldehyde composite for efficient U(VI) sorption from commercial phosphoric acid. Radiochim Acta 111(2):91–103

    Article  CAS  Google Scholar 

  55. X-5 Monte Carlo Team, MCNP—A general monte carlo n-particle transport code, Version 5, La-Ur-03-1987 II

  56. Abouhaswa AS, Sayyed MI, Altowyan AS, Al-Hadeethi Y, Mahmoud KA (2020) Evaluation of optical and gamma ray shielding features for tungsten-based bismuth borate glasses. Opt Mater 106:109981

    Article  CAS  Google Scholar 

  57. Kumar A, Jain A, Sayyed MI, Laariedh F, Mahmoud KA, Nebhen J, Khandaker MU, Faruque MRI (2021) Tailoring bismuth borate glasses by incorporating PbO/GeO2 for protection against nuclear radiation. Sci Rep 11(1):7784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mhareb MHA, Alqahtani M, Alajerami YSM, Alshahri F, Sayyed MI, Mahmoud KA, Saleh N, Alonizan N, Al-Buriahi MS, Kaky KM (2021) Ionizing radiation shielding features for titanium borosilicate glass modified with different concentrations of barium oxide. Mater Chem Phys 272:125047

    Article  CAS  Google Scholar 

  59. Hannachi E, Mahmoud KA, Sayyed MI, Slimani Y (2022) Structure, optical properties, and ionizing radiation shielding performance using Monte Carlo simulation for lead-free BTO perovskite ceramics doped with ZnO, SiO2, and WO3 oxides. Mater Sci Semicond Process 145:106629

    Article  CAS  Google Scholar 

  60. Alhindawy IG, Sayyed MI, Almuqrin AH, Mahmoud KA (2023) Optimizing gamma radiation shielding with cobalt-titania hybrid nanomaterials. Sci Rep 13(1):8936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Alhindawy IG, Sayyed MI, Aloraini DA, Almuqrin AH, Alomar MS, Elawadi GA, Mahmoud KA (2024) A multi-phase investigation to understand the function of lanthanum and neodymium in the zirconia ceramics’ synthesis, structural, and gamma-ray protective ability. Radiat Phys Chem 215:111336

    Article  CAS  Google Scholar 

  62. Alhindawy IG, Gamal H, Zaher AA, Sayyed MI, Almuqrin AH, Aloriani DA, Elsheikh YA, Bakather OY, Mahmoud KA (2024) La/Nd-doped zirconium oxide: Impact of zirconia phase transition on gamma-ray shielding properties. J Phys Chem Solids 187:111828

    Article  CAS  Google Scholar 

  63. Wang D, Guo Y, Liang K, Tao K (1999) Crystal structure of zirconia by Rietveld refinement. Sci China Ser A Math 42(1):80–86

    Article  CAS  Google Scholar 

  64. Evans JS, David W, Sleight A (1999) Structural investigation of the negative-thermal-expansion material ZrW2O8. Acta Crystallogr Sect B Struct Sci 55(3):333–340

    Article  CAS  Google Scholar 

  65. Alhindawy IG, Elshehy EA, Youssef AO, Abdelwahab SM, Zaher AA, El-Said WA, Mira HI, Abdelkader AM (2022) Improving the photocatalytic performance of cobalt-doped titania nanosheets by induced oxygen vacancies for efficient degradation of organic pollutants. Nano-Struct Nano-Objects 31:100888

    Article  CAS  Google Scholar 

  66. Alhindawy IG, Mira HI, Youssef AO, Abdelwahab SM, Zaher AA, El-Said WA, Elshehy EA, Abdelkader AM (2022) Cobalt doped titania-carbon nanosheets with induced oxygen vacancies for photocatalytic degradation of uranium complexes in radioactive wastes. Nanoscale Adv 4(24):5330–5342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mahmoud KA, Marashdeh MW, Al-Hmoud M, Aljaafreh MJ, Alanazi S, Alhindawy IG (2024) The potential of bi2–xZrxO3+x/2@ZrO2 (BZO) as a heavyweight radiation shielding material: fabrication and characterization using a hydrothermal technique directly from zircon mineral. Prog Nucl Energy 172:105216

    Article  CAS  Google Scholar 

  68. Eldoma MA, Alaswad SO, Mahmoud MA, Qudsieh IY, Hassan M, Bakather OY, Elawadi GA, Abouatiaa AFF, Alomar MS, Elhassan MS, Alhindawy IG, Ahmed ZM (2024) Enhancing photocatalytic performance of Co-TiO2 and Mo-TiO2-based catalysts through defect engineering and doping: a study on the degradation of organic pollutants under UV light. J Photochem Photobiol A Chem 446:115164

    Article  CAS  Google Scholar 

  69. Venkateswarlu K, Sandhyarani M, Nellaippan T, Rameshbabu N (2014) Estimation of crystallite size, lattice strain and dislocation density of nanocrystalline carbonate substituted hydroxyapatite by X-ray peak variance analysis. Procedia Mater Sci 5:212–221

    Article  CAS  Google Scholar 

  70. Ungár T (2001) Dislocation densities, arrangements and character from X-ray diffraction experiments. Mater Sci Eng A 309:14–22

    Article  Google Scholar 

  71. Call F, Roeb M, Schmücker M, Bru H, Curulla-Ferre D, Sattler C, Pitz-Paal R (2013) Thermogravimetric analysis of zirconia-doped ceria for thermochemical production of solar fuel. Am J Anal Chem 4(10):37–45

    Article  Google Scholar 

  72. Jose SK, Gopi S, Simon SM, Joseph C, Unnikrishnan N, Biju P (2016) Structural and optical characterization of Eu3+ doped polymer-zirconia composites. J Non Cryst Solids 452:245–252

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their gratitude to the Nuclear Materials Authority for accomplishing and conducting this research within the confines of its laboratories.

Author information

Authors and Affiliations

Authors

Contributions

Islam G. Alhindawy was involved in conceptualization, investigation, methodology, writing—original draft, and writing—reviewing and editing. K.A. Mahmoud was responsible for conceptualization, formal analysis, investigation, software, writing—original draft, and writing—reviewing and editing. M. Rashad contributed to funding acquisition, supervision, reviewing, and editing. M.I. Sayyed took part in conceptualization, formal analysis, investigation, supervision, reviewing, and editing.

Corresponding authors

Correspondence to Islam G. Alhindawy or K. A. Mahmoud.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Peiyao Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhindawy, I.G., Mahmoud, K.A., Rashad, M. et al. Zirconium tungstate (Zr4W8O32)-doped zirconium dioxide (ZrO2) for gamma ray shielding: an in-depth examination of fabrication, characterizations, and gamma ray attenuation properties. J Mater Sci 59, 12285–12304 (2024). https://doi.org/10.1007/s10853-024-09851-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09851-7

Navigation