Skip to main content
Log in

Morphological and structural control of dendritic mesoporous silica&titania nanospheres by the one-pot co-condensation approach

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Dendritic mesoporous silica nanospheres (DMSNs) possess excellent specific surface areas, pore volumes, and extremely accessible internal spaces. DMSNs have experienced high-speed development in the aspects of synthesis techniques, functionalization strategies, and application fields. It is proved that DMSNs own inherent structural superiorities as catalysts, adsorbents, or reaction platforms. Naturally, researchers are enlightened to conceive and attempt to synthesize dendritic mesoporous titania nanospheres (DMTNs) by replacing Si in DMSNs with Ti, in view of the superior activity and catalytic performance from TiO2. Nevertheless, the hydrolysis and condensation rates of the titanium precursors are too fast to develop ideal dendritic textures. To get the goal in a roundabout way, hybrid dendritic mesoporous silica&titania nanospheres (DMSTNs) come into sight. In this work, a series of DMSTNs have been synthesized by the one-pot co-condensation method. For the first time, their morphologies and architectures have been controlled by adjusting the ratio of titanium to silica, stirring speed, reaction temperature, co-solvent, etc. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) have been utilized to directly reveal their differences. The basic physicochemical properties of DMSTNs with fine topological structures have been compared, covering Fourier Transform Infrared spectroscopy (FT-IR), X-ray diffraction (XRD), N2 adsorption–desorption isotherms, Raman spectrum, X-ray photoelectron spectroscopy (XPS), ultraviolet–visible diffuse reflectance spectroscopy (UV-Vis-DRS), photoluminescence (PL) spectra, etc. Most importantly, these typical DMSTNs can photo-catalytically produce more hydrogen (2.4 ~ 3.6 times) within 1% Pt than that of bare DMSNs under simulated sunlight, owing to Ti in their skeletons.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Polshettiwar V, Cha D, Zhang XX, Jean MB (2010) High-Surface-Area silica nanospheres (KCC-1) with a fibrous morphology. Angew Chem Int Edit 49(50):9652–9656. https://doi.org/10.1002/anie.201003451

    Article  CAS  Google Scholar 

  2. Shen DK, Yang JP, Li XM, Zhou L, Zhang RY, Li W, Chen L, Wang R, Zhang F, Zhao DY (2014) Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett 14(2):923–932. https://doi.org/10.1021/nl404316v

    Article  CAS  PubMed  Google Scholar 

  3. Zhang K, Xu LL, Jiang JG, Calin N, Lam KF, Zhang SJ, Wu HH, Wu GD, Albela B, Bonneviot L, Wu P (2013) Facile large-scale synthesis of monodisperse mesoporous silica nanospheres with tunable pore structure. J Am Chem Soc 135(7):2427–2430. https://doi.org/10.1021/ja3116873

    Article  CAS  PubMed  Google Scholar 

  4. Zhang JS, Zhang MW, Yang C, Wang XC (2014) Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface. Adv Mater 26(24):4121–4126. https://doi.org/10.1002/adma.201400573

    Article  CAS  PubMed  Google Scholar 

  5. Wang YB, Du X, Liu Z, Shi SH, Lv HM (2019) Dendritic fibrous nano-particles (DFNPs): rising stars of mesoporous materials. J Mater Chem A 7(10):5111–5152. https://doi.org/10.1039/C8TA09815H

    Article  CAS  Google Scholar 

  6. Xu C, Lei C, Wang Y, Yu CZ (2022) Dendritic mesoporous nanoparticles: structure, synthesis and properties. Angew Chem Int Edit 61:e202112752. https://doi.org/10.1002/anie.202112752

    Article  CAS  Google Scholar 

  7. Wang YB, Zhang BL, Ding XP, Du X (2021) Dendritic mesoporous organosilica nanoparticles (DMONs): chemical composition, structural architecture, and promising applications. Nano Today 39:101231. https://doi.org/10.1016/j.nantod.2021.101231

    Article  CAS  Google Scholar 

  8. Wang YB, Wu P, Wang YN, He H, Huang LZ (2023) Dendritic mesoporous nanoparticles for the detection, adsorption, and degradation of hazardous substances in the environment: state-of-the-art and future prospects. J Environ Manage 345:118629. https://doi.org/10.1016/j.jenvman.2023.118629

    Article  CAS  PubMed  Google Scholar 

  9. Du X, Qiao SZ (2015) Dendritic silica particles with center-radial pore channels: Promising platforms for catalysis and biomedical applications. Small 11(4):392–413. https://doi.org/10.1002/smll.201401201

    Article  CAS  PubMed  Google Scholar 

  10. Wang YB, He J, Li XL, Shi YM, Zhang YT, Ding XP (2021) Dendritic mesoporous silica&titania nanospheres (DMSTNs) coupled with amorphous carbon nitride (ACN) for improved visible-light-driven hydrogen production. Appl Surf Sci 538:148147. https://doi.org/10.1016/j.apsusc.2020.148147

    Article  CAS  Google Scholar 

  11. Wang YB, Tao JH, Wang YN, Huang LZ, Ding XP (2022) Remarkable reduction ability towards p-nitrophenol by a synergistic effect against the aggregation and leaching of palladium nanoparticles in dendritic supported catalysts. Appl Surf Sci 574:151702. https://doi.org/10.1016/j.apsusc.2021.151702

    Article  CAS  Google Scholar 

  12. Wang YB, Wu P, Wang YN, Huang LZ, He H (2023) Controllable pore size of super-hydrophobic magnetic core-shell nanospheres with dendritic architecture and their pore-dependent performances in oil/water separation. Sep Purif Technol 323:124434. https://doi.org/10.1016/j.seppur.2023.124434

    Article  CAS  Google Scholar 

  13. Chen XB, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018):746–750. https://doi.org/10.1126/science.1200448

    Article  CAS  PubMed  Google Scholar 

  14. Liu N, Schneider C, Freitag D, Hartmann M, Venkatesan U, Müller J, Spiecker E, Schmuki P (2014) Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. Nano Lett 14(6):3309–3313. https://doi.org/10.1021/nl500710j

    Article  CAS  PubMed  Google Scholar 

  15. Cui HL, Zhao W, Yang CY, Yin H, Lin TQ, Shan YF, Xie Y, Gu H, Huang FQ (2014) Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting. J Mater Chem A 2(23):8612–8616. https://doi.org/10.1039/C4TA00176A

    Article  CAS  Google Scholar 

  16. Lim JH, Yang Y, Hoffmann MR (2019) Activation of peroxymonosulfate by oxygen vacancies-enriched cobalt-doped black TiO2 nanotubes for the removal of organic pollutants. Environ Sci Technol 53(12):6972–6980. https://doi.org/10.1021/acs.est.9b01449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. My Ali EK, Dilip SK, Ouellet L, Brassard D (2006) Titanium silicate films with high dielectric constant. United States Patent, 7101754B2

  18. Kalantari M, Gu ZY, Cao YX, Lei C, Zhang J (2020) Thiolated silica nanoadsorbents enable ultrahigh and fast decontamination of mercury(ii): understanding the contribution of thiol moieties’ density and accessibility on adsorption performance. Environ Sci: Nano 7(3):851–860. https://doi.org/10.1039/C9EN01123D

    Article  CAS  Google Scholar 

  19. Xie YY, Wang J, Wang MZ, Ge XW (2015) Fabrication of fibrous amidoxime-functionalized mesoporous silica microsphere and its selectively adsorption property for Pb2+ in aqueous solution. J Hazard Mater 297:66–73. https://doi.org/10.1016/j.jhazmat.2015.04.069

    Article  CAS  PubMed  Google Scholar 

  20. Wang YB, He J, Shi YM, Zhang YT (2020) Structure-dependent adsorptive or photocatalytic performances of solid and hollow dendritic mesoporous silica&titania nanospheres. Microporous Mesoporous Mater 305:110326. https://doi.org/10.1016/j.micromeso.2020.110326

    Article  CAS  Google Scholar 

  21. Cao X, Gao J, Yang YF, Li HY, Zheng XB, Liu GH, Jiang YJ (2022) Synergistic degradation of chlorophenol pollutants by a photo-enzyme integrated catalyst. J Environ Chem Eng 10(3):107909. https://doi.org/10.1016/j.jece.2022.107909

    Article  CAS  Google Scholar 

  22. Liu JN, Feng WX, Tian MM, Hu LH, Qu QS, Yang L (2021) Titanium dioxide-coated core-shell silica microspheres-based solid-phase extraction combined with sheathless capillary electrophoresis-mass spectrometry for analysis of glyphosate, glufosinate and their metabolites in baby foods. J Chromatogr A 1659:462519. https://doi.org/10.1016/j.chroma.2021.462519

    Article  CAS  PubMed  Google Scholar 

  23. Qian TT, Yin XP, Li JH, Nian HE, Xu H, Deng Y, Wang X (2017) Nano-TiO2 decorated radial-like mesoporous silica: preparation, characterization, and adsorption-photodegradation behavior. J Mater Sci Technol 33(11):1314–1322. https://doi.org/10.1016/j.jmst.2016.09.013

    Article  CAS  Google Scholar 

  24. Zhang Y, Cao X, Yang YF, Guan SM, Wang XT, Li HY, Zheng XB, Zhou LY, Jiang YJ, Gao J (2023) Visible light assisted enzyme-photocatalytic cascade degradation of organophosphorus pesticides. Green Chem Eng 4(1):30–38. https://doi.org/10.1016/j.gce.2022.02.001

    Article  Google Scholar 

  25. Wang XQ, Liu Y, Xu HL, Dai M, Qiao P, Wang WY, Liu YX, Song H (2022) Preparation of surface-decorated mesoporous dendritic fibrous nanosilica/TiO2 for use in phenol degradation. Appl Surf Sci 603:154414. https://doi.org/10.1016/j.apsusc.2022.154414

    Article  CAS  Google Scholar 

  26. Ouyang MY, Wang J, Peng B, Zhao YJ, Wang SP, Ma XB (2019) Effect of Ti on Ag catalyst supported on spherical fibrous silica for partial hydrogenation of dimethyl oxalate. Appl Surf Sci 466:592–600. https://doi.org/10.1016/j.apsusc.2018.10.065

    Article  CAS  Google Scholar 

  27. Yue Q, Li JL, Luo W, Zhang Y, Elzatahry AA, Wang XQ, Wang C, Li W, Cheng XW, Alghamdi A, Abdullah AM, Deng YH, Zhao DY (2015) An interface coassembly in biliquid phase: toward core-shell magnetic mesoporous silica microspheres with tunable pore size. J Am Chem Soc 137(41):13282–13289. https://doi.org/10.1021/jacs.5b05619

    Article  CAS  PubMed  Google Scholar 

  28. Wang YB, Hu KK, He J, Zhang YT (2019) Improving the size uniformity of dendritic fibrous nano-silica by a facile one-pot rotating hydrothermal approach. RSC Adv 9(43):24783–24790. https://doi.org/10.1039/C9RA04845F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moon DS, Lee JK (2012) Tunable synthesis of hierarchical mesoporous silica nanoparticles with radial wrinkle structure. Langmuir 28(33):12341–12347. https://doi.org/10.1021/la302145j

    Article  CAS  PubMed  Google Scholar 

  30. Maity A, Das A, Sen D, Mazumder S, Polshettiwar V (2017) Unraveling the formation mechanism of dendritic fibrous nanosilica. Langmuir 33(48):13774–13782. https://doi.org/10.1021/acs.langmuir.7b02996

    Article  CAS  PubMed  Google Scholar 

  31. Ryu J, Kim W, Yun JY, Lee K, Lee J, Yu H, Kim JH, Kim JJ, Jang J (2018) Fabrication of uniform wrinkled silica nanoparticles and their application to abrasives in chemical mechanical planarization. ACS Appl Mater Interfaces 10(14):11843–11851. https://doi.org/10.1021/acsami.7b15952

    Article  CAS  PubMed  Google Scholar 

  32. Yu YJ, Xing JL, Pang JL, Jiang SH, Lam KF, Yang TQ, Xue QS, Zhang K, Wu P (2014) Facile synthesis of size controllable dendritic mesoporous silica nanoparticles. ACS Appl Mater Interfaces 6(24):22655–22665. https://doi.org/10.1021/am506653n

    Article  CAS  PubMed  Google Scholar 

  33. Wang YB, He J, Ahmad M, Zhang BL, Mud N, Xie HJ, Zhang QY (2022) Desirable bonding interactions between organo-functional triazinedithiol groups and heavy metal ions for significantly improved adsorption or dispersion property. Chem Eng J 442:136220. https://doi.org/10.1016/j.cej.2022.136220

    Article  CAS  Google Scholar 

  34. Maity A, Belgamwar R, Polshettiwar V (2019) Facile synthesis to tune size, textural properties and fiber density of dendritic fibrous nanosilica for applications in catalysis and CO2 capture. Nat protoc 14:2177–2204. https://doi.org/10.1038/s41596-019-0177-z

    Article  CAS  PubMed  Google Scholar 

  35. Polshettiwar V (2022) Dendritic fibrous nanosilica: discovery, synthesis, formation mechanism, catalysis, and CO2 capture–conversion. Acc Chem Res 55(10):1395–1410. https://doi.org/10.1021/acs.accounts.2c00031

    Article  CAS  PubMed  Google Scholar 

  36. Cates ME, Andelman D, Safran SA, Roux D (1988) Theory of microemulsions: comparison with experimental behavior. Langmuir 4(4):802–806. https://doi.org/10.1021/la00082a004

    Article  CAS  Google Scholar 

  37. Nagarajan R, Ruckenstein E (2000) Molecular theory of microemulsions. Langmuir 16(16):6400–6415. https://doi.org/10.1021/la991578t

    Article  CAS  Google Scholar 

  38. Yang ZX, Xia YD, Mokaya R (2004) Zeolite ZSM-5 with unique supermicropores synthesized using mesoporous carbon as a template. Adv Mater 16(8):727–732. https://doi.org/10.1002/adma.200306295

    Article  CAS  Google Scholar 

  39. Huang L, Qin F, Huang Z, Zhuang Y, Ma JX, Xu HL, Shen W (2016) Hierarchical ZSM-5 zeolite synthesized by an ultrasound-assisted method as a long-life catalyst for dehydration of glycerol to acrolein. Ind Eng Chem Res 55(27):7318–7327. https://doi.org/10.1021/acs.iecr.6b01140

    Article  CAS  Google Scholar 

  40. Sing KSW (1985) Reporting physisorption data for gas/solid systems-with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  41. Qureshi ZS, Sarawade PB, Hussain I, Zhu HB, Al-Johani H, Anjum DH, Hedhili MN, Maity N, D’Elia V, Basset JM (2016) Gold nanoparticles supported on fibrous silica nanospheres (KCC-1) as efficient heterogeneous catalysts for CO oxidation. ChemCatChem 8:1671–1678. https://doi.org/10.1002/cctc.201600106

    Article  CAS  Google Scholar 

  42. Singh R, Bapat R, Qin LJ, Feng H, Polshettiwar V (2016) Atomic layer deposited (ALD) TiO2 on fibrous nano-silica (KCC-1) for photocatalysis: nanoparticle formation and size quantization effect. ACS Catal 6(5):2770–2784. https://doi.org/10.1021/acscatal.6b00418

    Article  CAS  Google Scholar 

  43. Zuo Y, Wang XS, Guo XW (2011) Synthesis of titanium silicalite-1 with small crystal size by using mother liquid of titanium silicalite-1 as seed. Ind Eng Chem Res 50(14):8485–8491. https://doi.org/10.1021/ie200281v

    Article  CAS  Google Scholar 

  44. Li YG, Lee YM, Porter JF (2002) The synthesis and characterization of titanium silicalite-1. J Mater Sci 37(10):1959–1965. https://doi.org/10.1023/A:1015234812360

    Article  CAS  Google Scholar 

  45. Espino-Estévez MR, Fernández-Rodríguez C, González-Díaz OM, Araña J, Espinós JP, Ortega-Méndez JA, Doña-Rodríguez JM (2016) Effect of TiO2-Pd and TiO2-Ag on the photocatalytic oxidation of diclofenac, isoproturon and phenol. Chem Eng J 298:82–95. https://doi.org/10.1016/j.cej.2016.04.016

    Article  CAS  Google Scholar 

  46. Chen JS, Lou XW (2011) Unusual rutileTiO2 nanosheets with exposed (001) facets. Chem Sci 2(11):2219–2223. https://doi.org/10.1039/C1SC00307K

    Article  CAS  Google Scholar 

  47. Sun ZN, Li HZ, Guo D, Sun J, Cui GJ, Liu Y, Tian YX, Yan SQ (2015) A multifunctional magnetic core-shell fibrous silica sensing probe for highly sensitive detection and removal of Zn2+ from aqueous solution. J Mater Chem C 3(18):4713–4722. https://doi.org/10.1039/C5TC00166H

    Article  CAS  Google Scholar 

  48. Yang HL, Li SW, Zhang XY, Wang XY, Ma JT (2014) Imidazolium ionic liquid-modified fibrous silica microspheres loaded with gold nanoparticles and their enhanced catalytic activity and reusability for the reduction of 4-nitrophenol. J Mater Chem A 2(2):12060–12067. https://doi.org/10.1039/C4TA01513D

    Article  CAS  Google Scholar 

  49. Sadeghzadeh SM (2015) A heteropolyacid-based ionic liquid immobilized onto fibrous nano-silica as an efficient catalyst for the synthesis of cyclic carbonate from carbon dioxide and epoxides. Green Chem 17(5):3059–3066. https://doi.org/10.1039/C5GC00377F

    Article  CAS  Google Scholar 

  50. Li ZJ, Hou B, Xu Y, Wu D, Sun YH (2005) Hydrothermal synthesis, characterization, and photocatalytic performance of silica-modified titanium dioxide nanoparticles. J Colloid Interface Sci 288(1):149–154. https://doi.org/10.1016/j.jcis.2005.02.082

    Article  CAS  PubMed  Google Scholar 

  51. Liu BS, Zhao XJ, Zhao QN, He X, Feng JY (2005) Effect of heat treatment on the UV-vis-NIR and PL spectra of TiO2 films. J Electron Spectrosc Relat Phenom 148(3):158–163. https://doi.org/10.1016/j.elspec.2005.05.003

    Article  CAS  Google Scholar 

  52. Jing LQ, Qu YC, Wang BQ, Li SD, Jiang BJ, Yang LB, Wei X, Fu HG, Sun JZ (2006) Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol Energy Mater Sol Cells 90(12):1773–1787. https://doi.org/10.1016/j.solmat.2005.11.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (52063029) and Natural Science Basic Research Program of Shaanxi (2022JM-200). Independent Knowledge Project of Lanzhou Regional Center of Resources and Environmental Science Instrument from Chinese Academy of Sciences (Y910211093).

Author information

Authors and Affiliations

Authors

Contributions

XP Ding and JH Tao involved in methodology, investigation, and original draft. LZ Huang involved in supervision. YB Wang and YN Wang involved in methodology, validation, supervision, funding acquisition, review and editing.

Corresponding authors

Correspondence to Yabin Wang or Yanni Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: N. Ravishankar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3508 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, X., Tao, J., Huang, L. et al. Morphological and structural control of dendritic mesoporous silica&titania nanospheres by the one-pot co-condensation approach. J Mater Sci 59, 12347–12360 (2024). https://doi.org/10.1007/s10853-024-09836-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09836-6

Navigation