Skip to main content
Log in

Enhanced cancer cell proliferation and aggressive phenotype counterbalance in breast cancer with high BRCA1 gene expression

  • Research
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

While comprehensive research exists on the mutation of the DNA repair gene BRCA1, limited information is available regarding the clinical significance of BRCA1 gene expression. Given that cancer cell proliferation is aggrevated by DNA repair, we hypothesized that high BRCA1 gene expression breast cancer (BC) might be linked with aggressive tumor biology and poor clinical outcomes.

Methods

The cohorts: The Cancer Genome Atlas (TCGA, n = 1069), METABRIC (n = 1903), and SCAN-B (n = 3273) were utilzed to obtain data of 6245 BC patients.

Results

BC patients without BRCA1 mutation exhibited higher BRCA1 expression, which was associated with DNA repair functionality. However, no such correlation was observed with BRCA2 expression. The association of high BRCA1 expression with cancer cell proliferation was evidenced by significant enrichment of cell proliferation-related gene sets, higher histological grade, and proliferation score. Furthermore, increased levels of homologous recombination deficiency, intratumoral heterogeneity, and altered fractions were associated with high BRCA1 expression. Moreover, BC with high BRCA1 expression exhibited reduced infiltration of dendritic cells and CD8 T-cells, while showing increased infiltration of Th1 cells. Surprisingly, BRCA1 expression was not associated with the survival of BC irrespective of the subtypes. Conversely, BC with low BRCA1 expression enriched cancer aggravating pathway gene sets, such as Cancer Stem Cell-related signaling (NOTCH and HEDGEHOG), Angiogenesis, Epithelial-Mesenchymal Transition, Inflammatory Response, and TGF-beta signaling.

Conclusion

Despite being linked to heightened proliferation of cancer cells and unassertive phenotype, BRCA1 expression did not show any association with survival in BC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

Abbreviations

SCAN-B:

The Sweden Cancerome Analysis Network—Breast

METABRIC:

Molecular Taxonomy of Breast Cancer International Consortium

TCGA:

The Cancer Genome Atlas

GEO:

Gene Expression Omnibus

GSEA:

Gene Set Enrichment Analysis

IRB:

Institutional review board

NES:

Normalized enrichment score

FDR:

False discovery rate

CYT:

Cytolytic activity score

MKI67:

Ki67 gene expression

TNBC:

Triple-negative breast cancer

TME:

Tumor microenvironment

mv:

Microvascular

ly:

Lymphatic

HRD:

Homologous recombination deficiency

SNV:

Single-nucleotide variant

TIME:

Tumor immune microenvironment

Th1:

T helper type 1 T-cell

Th2:

T helper type 2 T-cell

DC:

Dendritic cell

Treg:

Regulatory T-cell

Tgd:

Gamma delta T-cell

M1:

Type 1 macrophages

M2:

Type 2 macrophages

EMT:

Epithelial-Mesenchymal Transition

CSC:

Cancer stem cell

References

  1. Sun YS, Zhao Z, Yang ZN, Xu F, Lu HJ, Zhu ZY, Shi W, Jiang J, Yao PP, Zhu HP (2017) Risk factors and preventions of breast cancer. Int J Biol Sci 13(11):1387–1397. https://doi.org/10.7150/ijbs.21635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sheikh A, Hussain SA, Ghori Q, Naeem N, Fazil A, Giri S, Sathian B, Mainali P, Al Tamimi DM (2015) The spectrum of genetic mutations in breast cancer. Asian Pac J Cancer Prev 16(6):2177–2185. https://doi.org/10.7314/apjcp.2015.16.6.2177

    Article  PubMed  Google Scholar 

  3. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266(5182):66–71. https://doi.org/10.1126/science.7545954

    Article  CAS  PubMed  Google Scholar 

  4. Varol U, Kucukzeybek Y, Alacacioglu A, Somali I, Altun Z, Aktas S, Oktay Tarhan M (2018) BRCA genes: BRCA 1 and BRCA 2. J Buon 23(4):862–866

    PubMed  Google Scholar 

  5. Romagnolo AP, Romagnolo DF, Selmin OI (2015) BRCA1 as target for breast cancer prevention and therapy. Anticancer Agents Med Chem 15(1):4–14. https://doi.org/10.2174/1871520614666141020153543

    Article  CAS  PubMed  Google Scholar 

  6. Paul A, Paul S (2014) The breast cancer susceptibility genes (BRCA) in breast and ovarian cancers. Front Biosci (Landmark Ed) 19(4):605–618. https://doi.org/10.2741/4230

    Article  CAS  PubMed  Google Scholar 

  7. Yang B, Zhang B, Cao Z, Xu X, Huo Z, Zhang P, Xiang S, Zhao Z, Lv C, Meng M, Zhang G, Dong L, Shi S, Yang L, Zhou Q (2020) The lipogenic LXR-SREBF1 signaling pathway controls cancer cell DNA repair and apoptosis and is a vulnerable point of malignant tumors for cancer therapy. Cell Death Differ 27(8):2433–2450. https://doi.org/10.1038/s41418-020-0514-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hopkins JL, Lan L, Zou L (2022) DNA repair defects in cancer and therapeutic opportunities. Genes Dev 36(5–6):278–293. https://doi.org/10.1101/gad.349431.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu R, Patel A, Tokumaru Y, Asaoka M, Oshi M, Yan L, Ishikawa T, Takabe K (2022) High RAD51 gene expression is associated with aggressive biology and with poor survival in breast cancer. Breast Cancer Res Treat 193(1):49–63. https://doi.org/10.1007/s10549-022-06552-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oshi M, Kim TH, Tokumaru Y, Yan L, Matsuyama R, Endo I, Cherkassky L, Takabe K (2021) Enhanced DNA repair pathway is associated with cell proliferation and worse survival in hepatocellular carcinoma (HCC). Cancers (Basel). https://doi.org/10.3390/cancers13020323

    Article  PubMed  Google Scholar 

  11. Satyananda V, Oshi M, Endo I, Takabe K (2021) High BRCA2 gene expression is associated with aggressive and highly proliferative breast cancer. Ann Surg Oncol 28(12):7356–7365. https://doi.org/10.1245/s10434-021-10063-5

    Article  PubMed  Google Scholar 

  12. Chida K, Oshi M, Roy AM, Yachi T, Nara M, Yamada K, Matsuura O, Hashizume T, Endo I, Takabe K (2023) E2F target score is associated with cell proliferation and survival of patients with hepatocellular carcinoma. Surgery 174(2):307–314. https://doi.org/10.1016/j.surg.2023.04.030

    Article  PubMed  Google Scholar 

  13. Oshi M, Tokumaru Y, Benesch MG, Sugito N, Wu R, Yan L, Yamada A, Chishima T, Ishikawa T, Endo I, Takabe K (2022) High miR-99b expression is associated with cell proliferation and worse patient outcomes in breast cancer. Am J Cancer Res 12(10):4840–4852

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Oshi M, Tokumaru Y, Mukhopadhyay S, Yan L, Matsuyama R, Endo I, Takabe K (2021) Annexin A1 expression is associated with epithelial-mesenchymal transition (EMT), cell proliferation, prognosis, and drug response in pancreatic cancer. Cells. https://doi.org/10.3390/cells10030653

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wu R, Gandhi S, Tokumaru Y, Asaoka M, Oshi M, Yan L, Ishikawa T, Takabe K (2022) Intratumoral PDGFB gene predominantly expressed in endothelial cells is associated with angiogenesis and lymphangiogenesis, but not with metastasis in breast cancer. Breast Cancer Res Treat 195(1):17–31. https://doi.org/10.1007/s10549-022-06661-w

    Article  CAS  PubMed  Google Scholar 

  16. Okano M, Oshi M, Butash AL, Asaoka M, Katsuta E, Peng X, Qi Q, Yan L, Takabe K (2019) Estrogen receptor positive breast cancer with high expression of androgen receptor has less cytolytic activity and worse response to neoadjuvant chemotherapy but better survival. Int J Mol Sci. https://doi.org/10.3390/ijms20112655

    Article  PubMed  PubMed Central  Google Scholar 

  17. Angarita FA, Oshi M, Yamada A, Yan L, Matsuyama R, Edge SB, Endo I, Takabe K (2022) Low RUFY3 expression level is associated with lymph node metastasis in older women with invasive breast cancer. Breast Cancer Res Treat 192(1):19–32. https://doi.org/10.1007/s10549-021-06482-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brueffer C, Gladchuk S, Winter C, Vallon-Christersson J, Hegardt C, Häkkinen J, George AM, Chen Y, Ehinger A, Larsson C, Loman N, Malmberg M, Rydén L, Borg Å, Saal LH (2020) The mutational landscape of the SCAN-B real-world primary breast cancer transcriptome. EMBO Mol Med 12(10):e12118. https://doi.org/10.15252/emmm.202012118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Saal LH, Vallon-Christersson J, Häkkinen J, Hegardt C, Grabau D, Winter C, Brueffer C, Tang MH, Reuterswärd C, Schulz R, Karlsson A, Ehinger A, Malina J, Manjer J, Malmberg M, Larsson C, Rydén L, Loman N, Borg Å (2015) The Sweden cancerome analysis network - Breast (SCAN-B) initiative: a large-scale multicenter infrastructure towards implementation of breast cancer genomic analyses in the clinical routine. Genome Med 7:20. https://doi.org/10.1186/s13073-015-0131-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rydén L, Loman N, Larsson C, Hegardt C, Vallon-Christersson J, Malmberg M, Lindman H, Ehinger A, Saal LH, Borg Å (2018) Minimizing inequality in access to precision medicine in breast cancer by real-time population-based molecular analysis in the SCAN-B initiative. Br J Surg 105:e158–e168. https://doi.org/10.1002/bjs.10741

    Article  CAS  PubMed  Google Scholar 

  21. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Gräf S, Ha G, Haffari G, Bashashati A, Russell R, McKinney S, Langerød A, Green A, Provenzano E, Wishart G, Pinder S, Watson P, Markowetz F, Murphy L, Ellis I, Purushotham A, Børresen-Dale AL, Brenton JD, Tavaré S, Caldas C, Aparicio S (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486(7403):346–352. https://doi.org/10.1038/nature10983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70. https://doi.org/10.1038/nature11412

    Article  CAS  Google Scholar 

  23. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404. https://doi.org/10.1158/2159-8290.Cd-12-0095

    Article  PubMed  Google Scholar 

  24. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1. https://doi.org/10.1126/scisignal.2004088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu R, Roy AM, Tokumaru Y, Gandhi S, Asaoka M, Oshi M, Yan L, Ishikawa T, Takabe K (2022) NR2F1, a tumor dormancy marker is expressed predominantly in cancer-associated fibroblasts and is associated with suppressed breast cancer cell proliferation. Cancers (Basel). https://doi.org/10.3390/cancers14122962

    Article  PubMed  PubMed Central  Google Scholar 

  26. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tokumaru Y, Oshi M, Patel A, Katsuta E, Yan L, Angarita FA, Dasgupta S, Nagahashi M, Matsuhashi N, Futamura M, Yoshida K, Takabe K (2021) Low expression of miR-195 is associated with cell proliferation, glycolysis and poor survival in estrogen receptor (ER)-positive but not in triple negative breast cancer. Am J Cancer Res 11(6):3320–3334

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu R, Oshi M, Asaoka M, Huyser MR, Tokumaru Y, Yamada A, Yan L, Endo I, Ishikawa T, Takabe K (2022) APOBEC3F expression in triple-negative breast cancer is associated with tumor microenvironment infiltration and activation of cancer immunity and improved survival. Am J Cancer Res 12(2):744–762

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu R, Sarkar J, Tokumaru Y, Takabe Y, Oshi M, Asaoka M, Yan L, Ishikawa T, Takabe K (2022) Intratumoral lymphatic endothelial cell infiltration reflecting lymphangiogenesis is counterbalanced by immune responses and better cancer biology in the breast cancer tumor microenvironment. Am J Cancer Res 12(2):504–520

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P (2015) The Molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst 1:417–425. https://doi.org/10.1016/j.cels.2015.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hänzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7. https://doi.org/10.1186/1471-2105-14-7

    Article  PubMed  PubMed Central  Google Scholar 

  32. Oshi M, Newman S, Tokumaru Y, Yan L, Matsuyama R, Kalinski P, Endo I, Takabe K (2020) Plasmacytoid dendritic cell (pDC) infiltration correlate with tumor infiltrating lymphocytes, cancer immunity, and better survival in triple negative breast cancer (TNBC) more strongly than conventional dendritic cell (cDC). Cancers (Basel). https://doi.org/10.3390/cancers12113342

    Article  PubMed  Google Scholar 

  33. Oshi M, Gandhi S, Wu R, Asaoka M, Yan L, Yamada A, Yamamoto S, Narui K, Chishima T, Ishikawa T, Endo I, Takabe K (2022) Development of a novel BRCAness score that predicts response to PARP inhibitors. Biomark Res 10(1):80. https://doi.org/10.1186/s40364-022-00427-8

    Article  PubMed  PubMed Central  Google Scholar 

  34. Oshi M, Gandhi S, Yan L, Tokumaru Y, Wu R, Yamada A, Matsuyama R, Endo I, Takabe K (2022) Abundance of reactive oxygen species (ROS) is associated with tumor aggressiveness, immune response, and worse survival in breast cancer. Breast Cancer Res Treat 194(2):231–241. https://doi.org/10.1007/s10549-022-06633-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18(1):220. https://doi.org/10.1186/s13059-017-1349-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rooney SA, Young SL, Mendelson CR (1994) Molecular and cellular processing of lung surfactant. FASEB J 8(12):957–967. https://doi.org/10.1096/fasebj.8.12.8088461

    Article  CAS  PubMed  Google Scholar 

  37. Takahashi H, Kawaguchi T, Yan L, Peng X, Qi Q, Morris LGT, Chan TA, Tsung A, Otsuji E, Takabe K (2020) Immune cytolytic activity for comprehensive understanding of immune landscape in hepatocellular carcinoma. Cancers (Basel). https://doi.org/10.3390/cancers12051221

    Article  PubMed  PubMed Central  Google Scholar 

  38. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy JA, Ziv E, Culhane AC, Paull EO, Sivakumar IKA, Gentles AJ, Malhotra R, Farshidfar F, Colaprico A, Parker JS, Mose LE, Vo NS, Liu J, Liu Y, Rader J, Dhankani V, Reynolds SM, Bowlby R, Califano A, Cherniack AD, Anastassiou D, Bedognetti D, Mokrab Y, Newman AM, Rao A, Chen K, Krasnitz A, Hu H, Malta TM, Noushmehr H, Pedamallu CS, Bullman S, Ojesina AI, Lamb A, Zhou W, Shen H, Choueiri TK, Weinstein JN, Guinney J, Saltz J, Holt RA, Rabkin CS, Lazar AJ, Serody JS, Demicco EG, Disis ML, Vincent BG, Shmulevich I (2018) The Immune Landscape of Cancer. Immunity 48(4):812-830.e814. https://doi.org/10.1016/j.immuni.2018.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hedau S, Batra M, Singh UR, Bharti AC, Ray A, Das BC (2015) Expression of BRCA1 and BRCA2 proteins and their correlation with clinical staging in breast cancer. J Cancer Res Ther 11(1):158–163. https://doi.org/10.4103/0973-1482.140985

    Article  CAS  PubMed  Google Scholar 

  40. Mukhopadhyay S, Tokumaru Y, Oshi M, Endo I, Yoshida K, Takabe K (2022) Low adipocyte hepatocellular carcinoma is associated with aggressive cancer biology and with worse survival. Am J Cancer Res 12(8):4028–4039

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Oshi M, Tokumaru Y, Angarita FA, Lee L, Yan L, Matsuyama R, Endo I, Takabe K (2021) Adipogenesis in triple-negative breast cancer is associated with unfavorable tumor immune microenvironment and with worse survival. Sci Rep 11:12541. https://doi.org/10.1038/s41598-021-91897-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Katsuta E, Rashid OM, Takabe K (2020) Fibroblasts as a biological marker for curative resection in pancreatic ductal adenocarcinoma. Int J Mol Sci. https://doi.org/10.3390/ijms21113890

    Article  PubMed  PubMed Central  Google Scholar 

  43. Takahashi H, Asaoka M, Yan L, Rashid OM, Oshi M, Ishikawa T, Nagahashi M, Takabe K (2020) Biologically aggressive phenotype and anti-cancer immunity counterbalance in breast cancer with high mutation rate. Sci Rep 10(1):1852. https://doi.org/10.1038/s41598-020-58995-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Margeli M, Cirauqui B, Castella E, Tapia G, Costa C, Gimenez-Capitan A, Barnadas A, Sanchez Ronco M, Benlloch S, Taron M, Rosell R (2010) The prognostic value of BRCA1 mRNA expression levels following neoadjuvant chemotherapy in breast cancer. PLoS ONE 5(3):e9499. https://doi.org/10.1371/journal.pone.0009499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chodosh LA (1998) Expression of BRCA1 and BRCA2 in normal and neoplastic cells. J Mammary Gland Biol Neoplasia 3(4):389–402. https://doi.org/10.1023/a:1018784031651

    Article  CAS  PubMed  Google Scholar 

  46. Taron M, Rosell R, Felip E, Mendez P, Souglakos J, Ronco MS, Queralt C, Majo J, Sanchez JM, Sanchez JJ, Maestre J (2004) BRCA1 mRNA expression levels as an indicator of chemoresistance in lung cancer. Hum Mol Genet 13(20):2443–2449. https://doi.org/10.1093/hmg/ddh260

    Article  CAS  PubMed  Google Scholar 

  47. Weberpals J, Garbuio K, O’Brien A, Clark-Knowles K, Doucette S, Antoniouk O, Goss G, Dimitroulakos J (2009) The DNA repair proteins BRCA1 and ERCC1 as predictive markers in sporadic ovarian cancer. Int J Cancer 124(4):806–815. https://doi.org/10.1002/ijc.23987

    Article  CAS  PubMed  Google Scholar 

  48. Wang L, Wei J, Qian X, Yin H, Zhao Y, Yu L, Wang T, Liu B (2008) ERCC1 and BRCA1 mRNA expression levels in metastatic malignant effusions is associated with chemosensitivity to cisplatin and/or docetaxel. BMC Cancer 8:97. https://doi.org/10.1186/1471-2407-8-97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rakha EA, El-Sheikh SE, Kandil MA, El-Sayed ME, Green AR, Ellis IO (2008) Expression of BRCA1 protein in breast cancer and its prognostic significance. Hum Pathol 39(6):857–865. https://doi.org/10.1016/j.humpath.2007.10.011

    Article  CAS  PubMed  Google Scholar 

  50. Skoda AM, Simovic D, Karin V, Kardum V, Vranic S, Serman L (2018) The role of the hedgehog signaling pathway in cancer: a comprehensive review. Bosn J Basic Med Sci 18(1):8–20. https://doi.org/10.17305/bjbms.2018.2756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tang KD, Holzapfel BM, Liu J, Lee TK, Ma S, Jovanovic L, An J, Russell PJ, Clements JA, Hutmacher DW, Ling MT (2016) Tie-2 regulates the stemness and metastatic properties of prostate cancer cells. Oncotarget 7(3):2572–2584. https://doi.org/10.18632/oncotarget.3950

    Article  PubMed  Google Scholar 

  52. Harris KS, Kerr BA (2017) Prostate cancer stem cell markers drive progression, therapeutic resistance, and bone metastasis. Stem Cells Int 2017:8629234. https://doi.org/10.1155/2017/8629234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lugano R, Ramachandran M, Dimberg A (2020) Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci 77(9):1745–1770. https://doi.org/10.1007/s00018-019-03351-7

    Article  CAS  PubMed  Google Scholar 

  54. Oshi M, Newman S, Tokumaru Y, Yan L, Matsuyama R, Endo I, Nagahashi M, Takabe K (2020) Intra-tumoral angiogenesis is associated with inflammation, immune reaction and metastatic recurrence in breast cancer. Int J Mol Sci. https://doi.org/10.3390/ijms21186708

    Article  PubMed  PubMed Central  Google Scholar 

  55. Babaei G, Aziz SG, Jaghi NZZ (2021) EMT, cancer stem cells and autophagy; The three main axes of metastasis. Biomed Pharmacother 133:110909. https://doi.org/10.1016/j.biopha.2020.110909

    Article  CAS  PubMed  Google Scholar 

  56. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867. https://doi.org/10.1038/nature01322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by Rotary Club District 2830 to K. C., K. T. was supported by US National Institutes of Health grants R37CA248018, R01CA-250412, R01CA251545, R01EB029596, as well as US Department of Defense BCRP grants W81XWH-19-1-0674 and W81XWH-19-1-0111.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Masanori Oshi and Li Yan. The first draft of the manuscript was written by Kohei Chida, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kazuaki Takabe.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chida, K., Oshi, M., Roy, A.M. et al. Enhanced cancer cell proliferation and aggressive phenotype counterbalance in breast cancer with high BRCA1 gene expression. Breast Cancer Res Treat (2024). https://doi.org/10.1007/s10549-024-07421-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10549-024-07421-8

Keywords

Navigation