Skip to main content
Log in

The association between infectious agents and breast cancer: a review of the epidemiologic evidence

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose:

Several viruses have been casually linked to human cancers, including cervical, nasopharyngeal, liver, sarcoma, and Merkel cell carcinomas. However, the etiologic contribution of viral infections to breast cancer, the number one incident cancer among women worldwide, is not well established. Among studies exploring associations of viruses with breast cancer, potential linkages have been identified between breast cancer and five viruses: beta retrovirus, (i.e., mouse mammary tumor virus), human papillomavirus, Epstein Barr virus. bovine leukemia virus, and human cytomegalovirus.

Methods:

In this review, we provide a comprehensive evaluation of epidemiological ecologic, case–control, case-only, and cohort studies investigating these associations. We discuss results from several existing reviews and meta-analyses, evaluate epidemiological studies published in the past five years, and assess the relationship between these viruses and breast tumor clinicopathological factors.

Results:

The strongest epidemiological evidence for a viral role in breast cancer exists for MMTV and HPV, though limitations include lack of prospective studies for MMTV and potential detection bias in HPV studies. Viral detection challenges have limited studies of EBV and HCMV. Fewer studies have evaluated BLV, and though it has been associated with higher risk of breast cancer, sample sizes are quite small.  

Conclusion:

While epidemiologic evidence exists for an association between these five viruses and breast cancer, various methodological issues and lack of prospective studies preclude robust conclusions. Future research should prioritize establishing a temporal relationship between infection and disease, minimizing misclassification of detection assays, and further exploring the influence of co-infections.    

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No datasets were generated or analyzed for this review.

References

  1. Patel C, Brotherton JM, Pillsbury A et al (2018) The impact of 10 years of human papillomavirus (HPV) vaccination in Australia: what additional disease burden will a nonavalent vaccine prevent? Euro Surveill 23(41):1700737. https://doi.org/10.2807/1560-7917.ES.2018.23.41.1700737

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  CAS  PubMed  Google Scholar 

  3. Hill AB (1965) The environment and disease: association or causation? Proc R Soc Med 58(5):295–300

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Zur HH (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat rev cancer 2(5):342–350

    Article  Google Scholar 

  5. Vonka V (2000) Causality in medicine: the case of tumours and viruses. Philos Trans R Soc Lond B Biol Sci 355(1404):1831–1841. https://doi.org/10.1098/rstb.2000.0738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bittner JJ (1936) Some possible effects of nursing on the mammary gland tumor incidence in mICE. Science 84(2172):162. https://doi.org/10.1126/science.84.2172.162

    Article  CAS  PubMed  Google Scholar 

  7. Attalla S, Taifour T, Bui T, Muller W (2021) Insights from transgenic mouse models of PyMT-induced breast cancer: recapitulating human breast cancer progression in vivo. Oncogene 40(3):475–491. https://doi.org/10.1038/s41388-020-01560-0

    Article  CAS  PubMed  Google Scholar 

  8. Salmons B, Gunzburg WH (2013) Revisiting a role for a mammary tumor retrovirus in human breast cancer. Int J Cancer 133(7):1530–1535. https://doi.org/10.1002/ijc.28210

    Article  CAS  PubMed  Google Scholar 

  9. Lawson JS, Glenn WK (2022) Mouse mammary tumour virus (MMTV) in human breast cancer-the value of bradford hill criteria. Viruses 14(4):721. https://doi.org/10.3390/v14040721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lawson JS, Glenn WK (2019) Evidence for a causal role by mouse mammary tumour-like virus in human breast cancer. NPJ Breast Cancer 5:40. https://doi.org/10.1038/s41523-019-0136-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lawson JS, Glenn WK, Salmons B et al (2010) Mouse mammary tumor virus-like sequences in human breast cancer. Cancer Res 70(9):3576–3585. https://doi.org/10.1158/0008-5472.CAN-09-4160

    Article  CAS  PubMed  Google Scholar 

  12. Lehrer S, Rheinstein PH (2019) The virology of breast cancer: viruses as the potential causative agents of breast tumorigenesis. Discov Med 27(148):163–166

    PubMed  PubMed Central  Google Scholar 

  13. Stewart TH, Sage RD, Stewart AF, Cameron DW (2000) Breast cancer incidence highest in the range of one species of house mouse. Mus domesticus Br J Cancer 82(2):446–451. https://doi.org/10.1054/bjoc.1999.0941

    Article  CAS  PubMed  Google Scholar 

  14. Lawson JS, Tran DD, Carpenter E et al (2006) Presence of mouse mammary tumour-like virus gene sequences may be associated with morphology of specific human breast cancer. J Clin Pathol 59(12):1287–1292. https://doi.org/10.1136/jcp.2005.035907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Y, Melana SM, Baker B et al (2003) High prevalence of MMTV-like env gene sequences in gestational breast cancer. Med Oncol 20(3):233–236. https://doi.org/10.1385/MO:20:3:233

    Article  CAS  PubMed  Google Scholar 

  16. Zammarchi F, Pistello M, Piersigilli A et al (2006) MMTV-like sequences in human breast cancer: a fluorescent PCR/laser microdissection approach. J Pathol 209(4):436–444. https://doi.org/10.1002/path.1997

    Article  CAS  PubMed  Google Scholar 

  17. Etkind PR, Stewart AF, Wiernik PH (2008) Mouse mammary tumor virus (MMTV)-like DNA sequences in the breast tumors of father, mother, and daughter. Infect Agent Cancer 3:2. https://doi.org/10.1186/1750-9378-3-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang Y, Holland JF, Bleiweiss IJ et al (1995) Detection of mammary tumor virus env gene-like sequences in human breast cancer. Cancer Res 55(22):5173–5179

    CAS  PubMed  Google Scholar 

  19. de Sousa PN, Akelinghton Freire Vitiello G, Karina Banin-Hirata B, Scantamburlo Alves Fernandes G, José Sparça Salles M, Karine Amarante M, Watanabe AE, M. (2020) Mouse mammary tumor virus (mmtv)-like env sequence in brazilian breast cancer samples: implications in clinicopathological parameters in molecular subtypes. Intl J Env Res Publ Health. 24:9496

    Google Scholar 

  20. Al Dossary R, Alkharsah KR, Kussaibi H (2018) Prevalence of mouse mammary tumor virus (MMTV)-like sequences in human breast cancer tissues and adjacent normal breast tissues in saudi arabia. BMC Cancer 18(1):170. https://doi.org/10.1186/s12885-018-4074-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang FL, Zhang XL, Yang M et al (2021) Prevalence and characteristics of mouse mammary tumor virus-like virus associated breast cancer in China. Infect Agent Cancer 16(1):47. https://doi.org/10.1186/s13027-021-00383-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Naccarato AG, Lessi F, Zavaglia K et al (2019) Mouse mammary tumor virus (MMTV) - like exogenous sequences are associated with sporadic but not hereditary human breast carcinoma. Aging (Albany NY) 11(17):7236–7241. https://doi.org/10.18632/aging.102252

    Article  CAS  PubMed  Google Scholar 

  23. Johal H, Ford C, Glenn W, Heads J, Lawson J, Rawlinson W (2011) Mouse mammary tumor like virus sequences in breast milk from healthy lactating women. Breast Cancer Res Treat 129(1):149–155. https://doi.org/10.1007/s10549-011-1421-6

    Article  CAS  PubMed  Google Scholar 

  24. Nartey T, Moran H, Marin T et al (2014) human mammary tumor virus (HMTV) sequences in human milk. Infect Agent Cancer 9:20. https://doi.org/10.1186/1750-9378-9-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang F, Hou J, Shen Q et al (2014) Mouse mammary tumor virus-like virus infection and the risk of human breast cancer: a meta-analysis. Am J Transl Res 6(3):248–266

    PubMed  PubMed Central  Google Scholar 

  26. Nartey T, Mazzanti CM, Melana S et al (2017) Mouse mammary tumor-like virus (MMTV) is present in human breast tissue before development of virally associated breast cancer. Infect Agent Cancer 12:1. https://doi.org/10.1186/s13027-016-0113-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Khalid HF, Ali A, Fawad N et al (2021) MMTV-LIKE virus and c-myc over-expression are associated with invasive breast cancer. Infect Genet Evol 91:104827. https://doi.org/10.1016/j.meegid.2021.104827

    Article  CAS  PubMed  Google Scholar 

  28. Naushad W, Surriya O, Sadia H (2017) Prevalence of EBV, HPV and MMTV in Pakistani breast cancer patients: A possible etiological role of viruses in breast cancer. Infect Genet Evol 54:230–237. https://doi.org/10.1016/j.meegid.2017.07.010

    Article  PubMed  Google Scholar 

  29. Ford CE, Faedo M, Crouch R, Lawson JS, Rawlinson WD (2004) Progression from normal breast pathology to breast cancer is associated with increasing prevalence of mouse mammary tumor virus-like sequences in men and women. Cancer Res 64(14):4755–4759. https://doi.org/10.1158/0008-5472.CAN-03-3804

    Article  CAS  PubMed  Google Scholar 

  30. Etkind P, Du J, Khan A, Pillitteri J, Wiernik PH (2000) Mouse mammary tumor virus-like ENV gene sequences in human breast tumors and in a lymphoma of a breast cancer patient. Clin Cancer Res 6(4):1273–1278

    CAS  PubMed  Google Scholar 

  31. Mazzanti CM, Al Hamad M, Fanelli G et al (2011) A mouse mammary tumor virus env-like exogenous sequence is strictly related to progression of human sporadic breast carcinoma. Am J Pathol 179(4):2083–2090. https://doi.org/10.1016/j.ajpath.2011.06.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Faedo M, Ford CE, Mehta R, Blazek K, Rawlinson WD (2004) Mouse mammary tumor-like virus is associated with p53 nuclear accumulation and progesterone receptor positivity but not estrogen positivity in human female breast cancer. Clin Cancer Res 10(13):4417–4419. https://doi.org/10.1158/1078-0432.CCR-03-0232

    Article  CAS  PubMed  Google Scholar 

  33. Slaoui M, El Mzibri M, Razine R, Qmichou Z, Attaleb M, Amrani M (2014) Detection of MMTV-Like sequences in moroccan breast cancer cases. Infect Agent Cancer 9:37. https://doi.org/10.1186/1750-9378-9-37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Khalid HF, Bibi S, Ali A et al (2023) Decoding the mystery of MMTV-like virus and its relationship with breast cancer metastasis. J Infect Public Health 16(9):1396–1402. https://doi.org/10.1016/j.jiph.2023.07.004

    Article  PubMed  Google Scholar 

  35. J J, Goedert C S, Rabkin S R, Ross (2006) Prevalence of serologic reactivity against four strains of mouse mammary tumour virus among US women with breast cancer British Journal of Cancer 94(4) 548–551. https://doi.org/10.1038/sj.bjc.6602977

  36. Christine, Mant John, Cason (2004) A human murine mammary tumour virus‐like agent is an unconvincing aetiological agent for human breast cancer Abstract Reviews in Medical Virology 14(3) 169–177. https://doi.org/10.1002/rmv.v14:310.1002/rmv.427

  37. Dunne EF, Park IU (2013) HPV and HPV-associated diseases. Infect Dis Clin North Am 27(4):765–778. https://doi.org/10.1016/j.idc.2013.09.001

    Article  PubMed  Google Scholar 

  38. Dimri G, Band H, Band V (2005) Mammary epithelial cell transformation: insights from cell culture and mouse models. Breast Cancer Res 7(4):171–179. https://doi.org/10.1186/bcr1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lawson MA (2008) Human papillomavirus infection in adolescent and young women. Mo Med 105(1):42–46

    PubMed  Google Scholar 

  40. Serrano B, Brotons M, Bosch FX, Bruni L (2018) Epidemiology and burden of HPV-related disease. Best Pract Res Clin Obstet Gynaecol 47:14–26. https://doi.org/10.1016/j.bpobgyn.2017.08.006

    Article  PubMed  Google Scholar 

  41. Forman D, de Martel C, Lacey CJ et al (2012) Global burden of human papillomavirus and related diseases. Vaccine 30(Suppl 5):F12-23. https://doi.org/10.1016/j.vaccine.2012.07.055

    Article  PubMed  Google Scholar 

  42. Wang T, Chang P, Wang L et al (2012) The role of human papillomavirus infection in breast cancer. Med Oncol 29(1):48–55. https://doi.org/10.1007/s12032-010-9812-9

    Article  PubMed  Google Scholar 

  43. Haghshenas MR, Mousavi T, Moosazadeh M, Afshari M (2016) Human papillomavirus and breast cancer in Iran: a meta- analysis. Iran J Basic Med Sci 19(3):231–237

    PubMed  PubMed Central  Google Scholar 

  44. Boumba ALM, Malanda MboungouMoudiongui D, Ngatali SFC, Takale RP, Moukassa D, Peko JF (2021) Oncogenic human papillomavirus in breast cancer: molecular prevalence in a group of Congolese patients. Access Microbiol. 3(3):000216. https://doi.org/10.1099/acmi.0.000216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Elagali AM, Suliman AA, Altayeb M et al (2021) Human papillomavirus, gene mutation and estrogen and progesterone receptors in breast cancer: a cross-sectional study. Pan Afr Med J 38:43. https://doi.org/10.11604/pamj.2021.38.43.22013

    Article  PubMed  PubMed Central  Google Scholar 

  46. Biesaga B, Janecka-Widła A, Kołodziej-Rzepa M et al (2021) Low frequency of HPV positivity in breast tumors among patients from south-central Poland. Infect Agent Cancer 16(1):67. https://doi.org/10.1186/s13027-021-00405-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gebregzabher E, Seifu D, Tigneh W et al (2021) Detection of high- and low-risk hpv dna in archived breast carcinoma tissues from ethiopian women. Int J Breast Cancer 2021:2140151. https://doi.org/10.1155/2021/2140151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Joshi D, Buehring GC (2012) Are viruses associated with human breast cancer? Scrutinizing the molecular evidence. Breast Cancer Res Treat 135(1):1–15. https://doi.org/10.1007/s10549-011-1921-4

    Article  PubMed  Google Scholar 

  49. Bae JM, Kim EH (2016) Human papillomavirus infection and risk of breast cancer: a meta-analysis of case-control studies. Infect Agent Cancer 11:14. https://doi.org/10.1186/s13027-016-0058-9

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ren C, Zeng K, Wu C, Mu L, Huang J, Wang M (2019) Human papillomavirus infection increases the risk of breast carcinoma: a large-scale systemic review and meta-analysis of case-control studies. Gland Surg 8(5):486–500. https://doi.org/10.21037/gs.2019.09.04

    Article  PubMed  PubMed Central  Google Scholar 

  51. Islam S, Dasgupta H, Roychowdhury A et al (2017) Study of association and molecular analysis of human papillomavirus in breast cancer of Indian patients: Clinical and prognostic implication. PLoS ONE 12(2):e0172760. https://doi.org/10.1371/journal.pone.0172760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Delgado-García S, Martínez-Escoriza JC, Alba A et al (2017) Presence of human papillomavirus DNA in breast cancer: a Spanish case-control study. BMC Cancer 17(1):320. https://doi.org/10.1186/s12885-017-3308-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gannon OM, Antonsson A, Bennett IC, Saunders NA (2018) Viral infections and breast cancer-A current perspective. Cancer Lett 420:182–189. https://doi.org/10.1016/j.canlet.2018.01.076

    Article  CAS  PubMed  Google Scholar 

  54. Gumus M, Yumuk PF, Salepci T et al (2006) HPV DNA frequency and subset analysis in human breast cancer patients’ normal and tumoral tissue samples. J Exp Clin Cancer Res 25(4):515–521

    CAS  PubMed  Google Scholar 

  55. Glenn WK, Whitaker NJ, Lawson JS (2012) High risk human papillomavirus and Epstein Barr virus in human breast milk. BMC Res Notes 5:477. https://doi.org/10.1186/1756-0500-5-477

    Article  PubMed  PubMed Central  Google Scholar 

  56. GolrokhMofrad M, Sadigh ZA, Ainechi S, Faghihloo E (2021) Detection of human papillomavirus genotypes, herpes simplex, varicella zoster and cytomegalovirus in breast cancer patients. Virol J 18:25. https://doi.org/10.1186/s12985-021-01498-z

    Article  CAS  Google Scholar 

  57. Gupta I, Ulamec M, Peric-Balja M et al (2021) Presence of high-risk HPVs, EBV, and MMTV in human triple-negative breast cancer. Hum Vaccin Immunother 17(11):4457–4466. https://doi.org/10.1080/21645515.2021.1975452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Alinezhadi M, Makvandi M, Kaydani GA et al (2022) Detection of high-risk human papillomavirus DNA in invasive ductal carcinoma specimens. Asian Pac J Cancer Prev 23(9):3201–3207. https://doi.org/10.31557/APJCP.2022.23.9.3201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Maldonado-Rodríguez E, Hernández-Barrales M, Reyes-López A et al (2022) Presence of human papillomavirus DNA in malignant neoplasia and non-malignant breast disease. Curr Issues Mol Biol 44(8):3648–3665. https://doi.org/10.3390/cimb44080250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mareti E, Vavoulidis E, Papanastasiou A et al (2023) Evaluating the potential role of human papilloma virus infection in breast carcinogenesis via real-time polymerase chain reaction analyzes of breast fine needle aspiration samples from Greek patients. Diagn Cytopathol 51(7):414–422. https://doi.org/10.1002/dc.25130

    Article  PubMed  Google Scholar 

  61. Hansen BT, Nygård M, Falk RS, Hofvind S (2012) Breast cancer and ductal carcinoma in situ among women with prior squamous or glandular precancer in the cervix: a register-based study. Br J Cancer 107(9):1451–1453. https://doi.org/10.1038/bjc.2012.438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Søgaard M, Farkas DK, Ording AG, Sørensen HT, Cronin-FentonD. P (2016) Conisation as a marker of persistent human papilloma virus infection and risk of breast cancer. Br J Cancer 115(5):588–591. https://doi.org/10.1038/bjc.2016.150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gosvig CF, Huusom LD, Deltour I et al (2015) Role of human papillomavirus testing and cytology in follow-up after conization. Acta Obstet Gynecol Scand 94(4):405–411. https://doi.org/10.1111/aogs.12601

    Article  PubMed  Google Scholar 

  64. Lin C, Tsai SCS, Huang JY, Lin FCF (2023) HPV infection and breast cancer risk: insights from a nationwide population study in Taiwan. Front Oncol 13:1210381. https://doi.org/10.3389/fonc.2023.1210381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lawson JS, Glenn WK, Salyakina D et al (2015) Human papilloma viruses and breast cancer. Front Oncol 5:277. https://doi.org/10.3389/fonc.2015.00277

    Article  PubMed  PubMed Central  Google Scholar 

  66. Guo H, Idrovo JP, Cao J et al (2021) Human papillomavirus (HPV) detection by chromogenic in situ hybridization (CISH) and p16 immunohistochemistry (IHC) in breast intraductal papilloma and breast carcinoma. Clin Breast Cancer 21(6):e638–e646. https://doi.org/10.1016/j.clbc.2021.04.006

    Article  CAS  PubMed  Google Scholar 

  67. Makvandi M, Rashno M, Faghihloo E et al (2023) Low presence of papillomavirus and its lack of correlation with clinicopathological factors in breast cancer: a case control study. Iran J Microbiol 15(4):585–593. https://doi.org/10.18502/ijm.v15i4.13513

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cohen JI (2000) Epstein-Barr virus infection. N Engl J Med 343(7):481–492. https://doi.org/10.1056/NEJM200008173430707

    Article  CAS  PubMed  Google Scholar 

  69. Lawson JS, Günzburg WH, Whitaker NJ (2006) Viruses and human breast cancer. Future Microbiol 1(1):33–51. https://doi.org/10.2217/17460913.1.1.33

    Article  CAS  PubMed  Google Scholar 

  70. Richardson AK, Currie MJ, Robinson BA et al (2015) Cytomegalovirus and epstein-barr virus in breast cancer. PLoS ONE 10(2):e0118989. https://doi.org/10.1371/journal.pone.0118989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lawson JS, Glenn WK (2017) Multiple oncogenic viruses are present in human breast tissues before development of virus associated breast cancer. Infect Agent Cancer 12:55. https://doi.org/10.1186/s13027-017-0165-2

    Article  PubMed  PubMed Central  Google Scholar 

  72. Jin Q, Su J, Yan D, Wu S (2020) Epstein-barr virus infection and increased sporadic breast carcinoma risk: a meta-analysis. Med Princ Pract 29(2):195–200. https://doi.org/10.1159/000502131

    Article  PubMed  Google Scholar 

  73. Farahmand M, Monavari SH, Shoja Z, Ghaffari H, Tavakoli M, Tavakoli A (2019) Epstein-Barr virus and risk of breast cancer: a systematic review and meta-analysis. Future Oncol 15(24):2873–2885. https://doi.org/10.2217/fon-2019-0232

    Article  CAS  PubMed  Google Scholar 

  74. Huo Q, Zhang N, Yang Q (2012) Epstein-barr virus infection and sporadic breast cancer risk: a meta-analysis. PLoS ONE 7(2):e31656. https://doi.org/10.1371/journal.pone.0031656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Grinstein S, Preciado MV, Gattuso P et al (2002) Demonstration of Epstein-Barr virus in carcinomas of various sites. Cancer Res 62(17):4876–4878

    CAS  PubMed  Google Scholar 

  76. Pender MP (2003) Infection of autoreactive B lymphocytes with EBV, causing chronic autoimmune diseases. Trends Immunol 24(11):584–588. https://doi.org/10.1016/j.it.2003.09.005

    Article  CAS  PubMed  Google Scholar 

  77. Schairer C, Pfeiffer RM, Gadalla SM (2018) Autoimmune diseases and breast cancer risk by tumor hormone-receptor status among elderly women. Int J Cancer 142(6):1202–1208. https://doi.org/10.1002/ijc.31148

    Article  CAS  PubMed  Google Scholar 

  78. Hardefeldt PJ, Eslick GD, Edirimanne S (2012) Benign thyroid disease is associated with breast cancer: a meta-analysis. Breast Cancer Res Treat 133(3):1169–1177. https://doi.org/10.1007/s10549-012-2019-3

    Article  CAS  PubMed  Google Scholar 

  79. Yasui Y, Potter JD, Stanford JL et al (2001) Breast cancer risk and “delayed” primary Epstein-Barr virus infection. Cancer Epidemiol Biomarkers Prev 10(1):9–16

    CAS  PubMed  Google Scholar 

  80. Hjalgrim H, Askling J, Sørensen P et al (2000) Risk of hodgkin’s disease and other cancers after infectious mononucleosis. J Natl Cancer Inst 92(18):1522–1528. https://doi.org/10.1093/jnci/92.18.1522

    Article  CAS  PubMed  Google Scholar 

  81. Massa J, Hamdan A, Simon KC et al (2012) Infectious mononucleosis and risk of breast cancer in a prospective study of women. Cancer Causes Control 23(12):1893–1898. https://doi.org/10.1007/s10552-012-0064-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Heng YJ, Love S, DeHart JC, Fingeroth JD, Wulf GM (2022) The association of infectious mononucleosis and invasive breast cancer in The Health of Women (HOW) Study®. Breast Cancer 29(4):731–739. https://doi.org/10.1007/s12282-022-01351-3

    Article  PubMed  Google Scholar 

  83. Cox B, Richardson A, Graham P, Gislefoss RE, Jellum E, Rollag H (2010) Breast cancer, cytomegalovirus and Epstein-Barr virus: a nested case–control study. Br J Cancer 102(11):1665–1669. https://doi.org/10.1038/sj.bjc.6605675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Herbein G, Kumar A (2014) The oncogenic potential of human cytomegalovirus and breast cancer. Front Oncol 4:230. https://doi.org/10.3389/fonc.2014.00230

    Article  PubMed  PubMed Central  Google Scholar 

  85. Richardson A (1997) Is breast cancer caused by late exposure to a common virus? Med Hypotheses 48(6):491–497. https://doi.org/10.1016/s0306-9877(97)90118-3

    Article  CAS  PubMed  Google Scholar 

  86. Gihbid A, El Amrani A, Mouh FZ et al (2023) Prevalence of polyomaviruses and herpesviruses in moroccan breast cancer. Pathogens 12(5):640. https://doi.org/10.3390/pathogens12050640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nakhaie M, Charostad J, Azaran A et al (2021) Molecular and serological prevalence of HCMV in iranian patients with breast cancer. Asian Pac J Cancer Prev 22(7):2011–2016. https://doi.org/10.31557/APJCP.2021.22.7.2011

    Article  PubMed  PubMed Central  Google Scholar 

  88. Harkins LE, Matlaf LA, Soroceanu L et al (2010) Detection of human cytomegalovirus in normal and neoplastic breast epithelium. Herpesviridae 1:8. https://doi.org/10.1186/2042-4280-1-8

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sepahvand P, Makvandi M, Samarbafzadeh A et al (2019) Human cytomegalovirus DNA among women with breast cancer. Asian Pac J Cancer Prev 20(8):2275–2279. https://doi.org/10.31557/APJCP.2019.20.8.2275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. El Shazly DF, Bahnassey AA, Omar OS et al (2018) Detection of human cytomegalovirus in malignant and benign breast tumors in egyptian women. Clin Breast Cancer 18(4):e629–e642. https://doi.org/10.1016/j.clbc.2017.10.018

    Article  PubMed  Google Scholar 

  91. Aran D, Camarda R, Odegaard J et al (2017) Comprehensive analysis of normal adjacent to tumor transcriptomes. Nat Commun 8:1077. https://doi.org/10.1038/s41467-017-01027-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Taher C, de Boniface J, Mohammad AA et al (2013) High prevalence of human cytomegalovirus proteins and nucleic acids in primary breast cancer and metastatic sentinel lymph nodes. PLoS ONE 8(2):e56795. https://doi.org/10.1371/journal.pone.0056795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cui J, Wang Q, Wang HB, Wang B, Li L (2018) Protein and DNA evidences of HCMV infection in primary breast cancer tissues and metastatic sentinel lymph nodes. Cancer Biomark 21(4):769–780. https://doi.org/10.3233/CBM-170409

    Article  CAS  PubMed  Google Scholar 

  94. Ghaffari H, Tavakoli A, Nafissi N et al (2021) Human cytomegalovirus and Epstein-Barr virus infections in breast cancer: A molecular study on Iranian women. Breast Dis 40(4):227–233. https://doi.org/10.3233/BD-201019

    Article  CAS  PubMed  Google Scholar 

  95. Touma J, Pantalone MR, Rahbar A et al (2023) Human cytomegalovirus protein expression is correlated with shorter overall survival in breast cancer patients: a cohort study. Viruses 15(3):732. https://doi.org/10.3390/v15030732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Taher C, Frisk G, Fuentes S et al (2014) High prevalence of human cytomegalovirus in brain metastases of patients with primary breast and colorectal cancers. Transl Oncol 7(6):732–740. https://doi.org/10.1016/j.tranon.2014.09.008

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zur Hausen H, de Villiers EM (2015) Dairy cattle serum and milk factors contributing to the risk of colon and breast cancers. Int J cancer 137(4):959–967

    Article  CAS  PubMed  Google Scholar 

  98. Canova R, Weber MN, Budaszewski RF et al (2021) Bovine leukemia viral DNA found on human breast tissue is genetically related to the cattle virus. One Health 13:100252. https://doi.org/10.1016/j.onehlt.2021.100252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gillet NA, Willems L (2016) Whole genome sequencing of 51 breast cancers reveals that tumors are devoid of bovine leukemia virus DNA. Retrovirology 13(1):75. https://doi.org/10.1186/s12977-016-0308-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Amato S, Ramsey J, Ahern TP et al (2023) Exploring the presence of bovine leukemia virus among breast cancer tumors in a rural state. Breast Cancer Res Treat 202(2):325–334. https://doi.org/10.1007/s10549-023-07061-4

    Article  CAS  PubMed  Google Scholar 

  101. Yamanaka MP, Saito S, Hara Y et al (2022) No evidence of bovine leukemia virus proviral DNA and antibodies in human specimens from Japan. Retrovirology 19(1):7. https://doi.org/10.1186/s12977-022-00592-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Khatami A, Pormohammad A, Farzi R et al (2020) Bovine Leukemia virus (BLV) and risk of breast cancer: a systematic review and meta-analysis of case-control studies. Infect Agent Cancer 15:48. https://doi.org/10.1186/s13027-020-00314-7

    Article  PubMed  PubMed Central  Google Scholar 

  103. Khan Z, Abubakar M, Arshed MJ et al (2022) Molecular investigation of possible relationships concerning bovine leukemia virus and breast cancer. Sci Rep 12(1):4161. https://doi.org/10.1038/s41598-022-08181-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Olaya-Galán NN, Salas-Cárdenas SP, Rodriguez-Sarmiento JL et al (2021) Risk factor for breast cancer development under exposure to bovine leukemia virus in Colombian women: A case-control study. PLoS ONE 16(9):e0257492. https://doi.org/10.1371/journal.pone.0257492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Delarmelina E, Buzelin MA, de Souza BS et al (2020) High positivity values for bovine leukemia virus in human breast cancer cases from Minas Gerais, Brazil. PLoS ONE 15(10):e0239745. https://doi.org/10.1371/journal.pone.0239745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Buehring GC, Shen H, Schwartz DA, Lawson JS (2017) Bovine leukemia virus linked to breast cancer in Australian women and identified before breast cancer development. PLoS ONE 12(6):e0179367. https://doi.org/10.1371/journal.pone.0179367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Baltzell KA, Shen HM, Krishnamurthy S, Sison JD, Nuovo GJ, Buehring GC (2018) Bovine leukemia virus linked to breast cancer but not coinfection with human papillomavirus: Case-control study of women in Texas. Cancer 124(7):1342–1349. https://doi.org/10.1002/cncr.31169

    Article  PubMed  Google Scholar 

  108. Ji J, Sundquist J, Sundquist K (2015) Lactose intolerance and risk of lung, breast and ovarian cancers: aetiological clues from a population-based study in Sweden. Br J Cancer 112(1):149–152. https://doi.org/10.1038/bjc.2014.544

    Article  CAS  PubMed  Google Scholar 

  109. Lawson JS, Salmons B, Glenn WK (2018) Oncogenic Viruses and Breast Cancer: Mouse Mammary Tumor Virus (MMTV), Bovine Leukemia Virus (BLV), Human Papilloma Virus (HPV), and Epstein-Barr Virus (EBV). Front Oncol 8:1. https://doi.org/10.3389/fonc.2018.00001

    Article  PubMed  PubMed Central  Google Scholar 

  110. Cassedy A, Parle-McDermott A, O’Kennedy R (2021) Virus detection: a review of the current and emerging molecular and immunological methods. Front Mol Biosci. https://doi.org/10.3389/fmolb.2021.637559

    Article  PubMed  PubMed Central  Google Scholar 

  111. Westra WH (2014) Detection of human papillomavirus (HPV) in clinical samples: Evolving methods and strategies for the accurate determination of HPV status of head and neck carcinomas. Oral Oncol 50(9):771–779. https://doi.org/10.1016/j.oraloncology.2014.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  112. Lash TL, Fox MP, MacLehose RF, Maldonado G, McCandless LC, Greenland S (2014) Good practices for quantitative bias analysis. Int J Epidemiol 43(6):1969–1985. https://doi.org/10.1093/ije/dyu149

    Article  PubMed  Google Scholar 

  113. Barnard ME, Boeke CE, Tamimi RM (2015) Established breast cancer risk factors and risk of intrinsic tumor subtypes. Biochim Biophys Acta 1856(1):73–85. https://doi.org/10.1016/j.bbcan.2015.06.002

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by T32 CA009001, awarded to A. Heather Eliassen (HSPH) by the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of this review. Kristen Brantley conducted literature review via PubMed to identify relevant articles. The first draft of the manuscript was written by Kristen Brantley and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kristen D. Brantley.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brantley, K.D., Tamimi, R.M. The association between infectious agents and breast cancer: a review of the epidemiologic evidence. Breast Cancer Res Treat (2024). https://doi.org/10.1007/s10549-024-07388-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10549-024-07388-6

keywords

Navigation