Skip to main content
Log in

The effects of solar radiation and geomagnetic disturbance during consecutive 27-day recurrent geomagnetic storms on variations of equatorial ionospheric parameters and spread F

  • Research
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

This study investigates contributions of solar radiation and geomagnetic activity of consecutive 27-day recurrent geomagnetic storms (RGSs) to the variabilities in the equatorial ionospheric F-region in American Peruvian sector during 2007. Results show the ionospheric responses to the RGSs are quasi-periodic and multifaceted with highly evolved in the summer months. In High-Intensity Long-Duration Continuous \(AE\) Activity (HILDCAA) events, the ionospheric responses are more variable than in non-HILDCAA. The critical frequency and peak height of the F-layer tend to increase during storm-time in summer months. The maximum density enhancements are more than 70% in the three RGSs and they are long-lasting in the summer months. A new classification of daily variations in the virtual height of the F-layer (\(h'F\)) is proposed: Mode A shows mixing of great height before noon and low height near midnight, Mode B shows moderate height near midnight, and Mode C shows mixing of high height before noon and great height near midnight. These \(h'F\) Modes efficiently characterize the ionospheric variabilities and processes. The great uplifts of \(h'F\) during night-time in the summer months coincide with the presence of strong disturbance dynamo electric fields and disturbed neutral winds generated by intensified Joule heating. The solar EUV plays a role in the uplifts of \(h'F\) during the daytime. Zonal electric field disturbances and perturbations in the neutral meridional winds critically contribute to the equatorial ionospheric responses and ESF variabilities. Most cases of inhibited/suppressed ESF were observed in Mode A and occurred under overshielding conditions. The inhibited ESF associated with \(h'F\) not raised in the recovery phase is mainly contributed by a cooling state after great uplifts by daytime thermospheric winds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  • Abdu, M.A.: Major phenomena of the equatorial ionosphere-thermosphere system under disturbed conditions. J. Atmos. Sol.-Terr. Phys. 59, 1505 (1997)

    Article  ADS  Google Scholar 

  • Abdu, M.A.: Equatorial spread F development and quiet time variability under solar minimum conditions. Indian J. Radio Space Phys. 41, 168 (2012)

    Google Scholar 

  • Abdu, M.A., deMedeiros, R.T., Bittencourt, J.A., Batista, I.S.: Vertical ionization drift velocities and range type spread F in the evening equatorial ionosphere. J. Geophys. Res. 88, 399 (1983). https://doi.org/10.1029/JA088iA01p00399

    Article  ADS  Google Scholar 

  • Abdu, M.A., Kherani, E.A., Batista, I.S., de Paula, E.R., Fritts, D.C., Sobral, J.H.A.: Gravity wave initiation of equatorial spread F/plasma bubble irregularities based on observational data from the SpreadFEx campaign. Ann. Geophys. 27, 1 (2009)

    Article  Google Scholar 

  • Abdu, M.A., Batista, I.S., Bertoni, F., Reinisch, B.W., Kherani, E.A., Sobral, J.H.A.: Equatorial ionosphere responses to two magnetic storms of moderate intensity from conjugate point observations in Brazil. J. Geophys. Res. 117, A05321 (2012)

    ADS  Google Scholar 

  • Ambili, K.M., Choudhary, R.K.: The role of the storm-time prompt penetrating electric field on the net distribution of plasma density over the low latitude ionospheric regions. Adv. Space Res. 72, 1644 (2023)

    Article  ADS  Google Scholar 

  • Anderson, D., Anghel, A., Chau, J.L., Yumoto, K.: Global, low-latitude, vertical E × B drift velocities inferred from daytime magnetometer observations. Space Weather 4, S08003 (2006). https://doi.org/10.1029/2005SW000193

    Article  ADS  Google Scholar 

  • Balan, N., Bailey, G.J., Jenkins, B., Rao, P.B., Moffett, R.J.: Variations of ionospheric ionization and related solar fluxes during an intense solar cycle. J. Geophys. Res. 99, 2243 (1994)

    Article  ADS  Google Scholar 

  • Balan, N., Shiokawa, K., Otsuka, Y., Watanabe, S., Bailey, G.J.: Super plasma fountain and equatorial ionization anomaly during penetration electric field. J. Geophys. Res. 114, A03310 (2009)

    ADS  Google Scholar 

  • Balan, N., Yamamoto, M., Liu, J.Y., Otsuka, Y., Liu, H., Lühr, H.: New aspects of thermospheric and ionospheric storms revealed by CHAMP. J. Geophys. Res., Earth Surf. 116, A07305 (2011)

    Article  ADS  Google Scholar 

  • Balan, N., Liu, L., Le, H.J.: A brief review of equatorial ionization anomaly and ionospheric irregularities. Earth Planet. Phys. 2, 257 (2018)

    Article  ADS  Google Scholar 

  • Batista, I.S., Candido, C.M.N., Souza, J.R., Abdu, M.A., de Araujo, R.C., Resende, L.C.A., et al.: F3 layer development during quiet and disturbed periods as observed at conjugate locations in Brazil: the role of the meridional wind. J. Geophys. Res. Space Phys. 122, 2361 (2017)

    Article  ADS  Google Scholar 

  • Bello, S.A., Abdullah, M., Hamid, N.S.A., Reinisch, B.W., Yoshikawa, A., Fujimoto, A.: Response of ionospheric profile parameters to equatorial electrojet over Peruvian station. Earth Space Sci. 6, 617 (2019)

    Article  ADS  Google Scholar 

  • Beshir, E., Nigussie, M., Moldwin, M.B.: Characteristics of equatorial nighttime spread F – an analysis on season-longitude, solar activity and triggering causes. Adv. Space Res. 65, 95 (2020)

    Article  ADS  Google Scholar 

  • Blanc, M., Richmond, A.D.: The ionospheric disturbance dynamo. J. Geophys. Res. 85, 1669 (1980)

    Article  ADS  Google Scholar 

  • Booker, H., Wells, H.: Scattering of radio waves by the f-region of the ionosphere. Terr. Magn. Atmos. Electr. 43, 249 (1938)

    Article  Google Scholar 

  • Chen, Y., Wang, W., Burns, A.G., Liu, S., Gong, J., Yue, X., Jiang, G., Coster, A.: Ionospheric response to CIR-induced recurrent geomagnetic activity during the declining phase of solar cycle 23. J. Geophys. Res. 120, 1394 (2015). https://doi.org/10.1002/2014JA020657

    Article  Google Scholar 

  • Chingarandi, F.S., Candido, C.M.N., Becker-Guedes, F., Jonah, O.F., Moraes-Santos, S.P., Klausner, V., Taiwo, O.O.: Assessing the effects of a minor CIR-HSS geomagnetic storm on the Brazilian low-latitude ionosphere: ground and space-based observations. Space Weather 21, e2023SW003500 (2023). https://doi.org/10.1029/2023SW003500

    Article  ADS  Google Scholar 

  • Chun, F.K., Knipp, D.J., McHarg, M.G., Lu, G., Emery, B.A., Vennerstrøm, S., Troshichev, O.A.: Polar cap index as a proxy for hemispheric Joule heating. Geophys. Res. Lett. 26, 1101 (1999)

    Article  ADS  Google Scholar 

  • Chun, F.K., Knipp, D.J., McHarg, M.G., Lacey, G., Lu, J.R., Emery, B.A.: Joule heating patterns as a function of polar cap index. J. Geophys. Res. 107, A7 (2002)

    Google Scholar 

  • da Silva, R.P., Denardini, C.M., Marques, M.S., Resende, L.C.A., Moro, J., da Silva Picanço, G.A., Borba, G.L., Santos, M.A.F.D.: Ionospheric total electron content responses to HILDCAA intervals. Ann. Geophys. 38, 27 (2020)

    Article  ADS  Google Scholar 

  • de Siqueira Negreti, P.M., de Paula, E.R., Candido, C.M.N.: Total electron content responses to HILDCAAs and geomagnetic storms over South America. Ann. Geophys. 35, 1309 (2017)

    Article  ADS  Google Scholar 

  • Deng, Y., Fuller-Rowell, T.J., Akmaev, R.A., Ridley, A.J.: Impact of the altitudinal Joule heating distribution on the thermosphere. J. Geophys. Res. 116, A05313 (2011)

    ADS  Google Scholar 

  • Eccles, J.V., Maurice, J.P.S., Schunk, R.W.: Mechanisms underlying the prereversal enhancement of the vertical plasma drift in the low-latitude ionosphere. J. Geophys. Res. 120, 4950 (2015). https://doi.org/10.1002/2014JA020664

    Article  Google Scholar 

  • Fang, T.W., Richmond, A., Liu, J., Maute, A.: Wind dynamo effects on ground magnetic perturbations and vertical drifts. J. Geophys. Res. 113, A11313 (2008)

    ADS  Google Scholar 

  • Fang, T.W., Fuller-Rowell, T., Yudin, V., Matsuo, T., Viereck, R.: Quantifying the sources of ionosphere day-to-day variability. J. Geophys. Res. 123, 9682 (2018)

    Article  Google Scholar 

  • Fejer, B.G., Scherliess, L.: Empirical models of storm time equatorial zonal electric fields. J. Geophys. Res. 102, 24047 (1997)

    Article  ADS  Google Scholar 

  • Fejer, B.G., Scherliess, L., de Paula, E.R.: Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. J. Geophys. Res. 104, 19854 (1999)

    ADS  Google Scholar 

  • Gentile, L.C., Burke, W.J., Rich, F.J.: A climatology of equatorial plasma bubbles from DMSP 1989-2004. Radio Sci. 41, RS5S21 (2006)

    Article  Google Scholar 

  • Guo, J., Wei, F., Feng, X., Liu, H., Wan, W., Yang, Z., et al.: Alfvén waves as a solar-interplanetary driver of the thermospheric disturbances. Sci. Rep. 6, 18895 (2016)

    Article  ADS  Google Scholar 

  • Hocke, K.: Oscillations of global mean TEC. J. Geophys. Res. 113, A04302 (2008)

    ADS  Google Scholar 

  • Huang, C.S.: Equatorial ionospheric electrodynamics associated with high-speed solar wind streams during January-April 2007. J. Geophys. Res. 117, A10311 (2012). https://doi.org/10.1029/2012JA017930

    Article  ADS  Google Scholar 

  • Huang, C.-S.: Effects of the postsunset vertical plasma drift on the generation of quatorial spread F. Prog. Earth Planet. Sci. 5, 3 (2018)

    Article  ADS  Google Scholar 

  • Imtiaz, N., Hammou Ali, O., Rizvi, H.: Impact of the intense geomagnetic storm of August 2018 on the equatorial and low latitude ionosphere. Astrophys. Space Sci. 366, 106 (2021). https://doi.org/10.1007/s10509-021-04009-2

    Article  ADS  Google Scholar 

  • Kassa, T., Damtie, B.: Ionospheric irregularities over Bahir Dar, Ethiopia during selected geomagnetic storms. Adv. Space Res. 60, 121 (2017)

    Article  ADS  Google Scholar 

  • Kikuchi, T., Lühr, H., Kitamura, T., Saka, O., Schlegel, K.: Direct penetration of the polar electric field to the equator during a \(DP\) 2 event as detected by the auroral and equatorial magnetometer chains and the EISCAT radar. J. Geophys. Res. 101, 17161 (1996)

    Article  ADS  Google Scholar 

  • King, J.W., Kohl, H.: Upper atmospheric winds and ionospheric drifts caused by neutral air pressure gradients. Nature 206, 699 (1965)

    Article  ADS  Google Scholar 

  • Koga, D., Sobral, J.H.A., Gonzalez, W.D., Arruda, D.C.S., Abdu, M.A., de Castilho, V.M., Mascarenhas, M., Gonzalez, A.C., Tsurutani, B.T., Denardini, C.M., Zamlutti, C.J.: Electrodynamic coupling processes between the magnetosphere and the equatorial ionosphere during a 5-day HILDCAA event. J. Atmos. Sol.-Terr. Phys. 73, 148 (2011). https://doi.org/10.1016/j.jastp.2010.09.002

    Article  ADS  Google Scholar 

  • Lean, J.L., Woods, T.N., Eparvier, F.G., Meier, R.R., Strickland, D.J., Correira, J.T., Evans, J.S.: Solar extreme ultraviolet irradiance: present, past, and future. J. Geophys. Res. 116, A01102 (2011)

    ADS  Google Scholar 

  • Lee, C.C., Reinisch, B.W.: Quiet-condition \(h_{m}F_{2}\), \(N_{m}F_{2}\), and B0 variations at Jicamarca and comparison with IRI-2001during solar maximum. J. Atmos. Sol.-Terr. Phys. 68, 2138 (2006)

    Article  ADS  Google Scholar 

  • Lee, C.C., Reinisch, B.W., Su, S.Y., Chen, W.S.: Quiet-time variations of \(F_{2}\)-layer parameters at Jicamarca and comparison with IRI-2001 during solar minimum. J. Atmos. Sol.-Terr. Phys. 70, 184 (2008)

    Article  ADS  Google Scholar 

  • Lei, J., Thayer, J.P., Forbes, J.M., Sutton, E.K., Nerem, R.S., Temmer, M., Veronig, A.M.: Global thermospheric density variations caused by high-speed solar wind streams during the declining phase of solar cycle 23. J. Geophys. Res. 113, A11303 (2008a)

    ADS  Google Scholar 

  • Lei, J., Thayer, J.P., Forbes, J.M., Wu, Q., She, C., Wan, W., Wang, W.: Ionosphere response to solar wind high-speed streams. Geophys. Res. Lett. 35, L19105 (2008b)

    Article  ADS  Google Scholar 

  • Lei, J., Thayer, J.P., Wang, W., McPherron, R.L.: Impact of CIR storms on thermosphere density variability during the solar minimum of 2008. Sol. Phys. 274, 427 (2011)

    Article  ADS  Google Scholar 

  • Li, J., Wang, S., Li, S., Xu, Z., Yang, J.: Analysis of ionosphere response during high-speed solar wind stream in early August 2020. Astrophys. Space Sci. 366, 73 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  • Lin, C.H., Richmond, A.D., Heelis, R.A., Bailey, G.J., Lu, G., Liu, J.Y., Yeh, H.C., Su, S.-Y.: Theoretical study of the low- and midlatitude ionospheric electron density enhancement during the October 2003 superstorm: relative importance of the neutral wind and the electric field. J. Geophys. Res. 110, A12312 (2005)

    ADS  Google Scholar 

  • Liu, H., Lühr, H.: Strong disturbance of the upper thermospheric density due to magnetic storms: CHAMP observations. J. Geophys. Res. 110, A09S29 (2005)

    ADS  Google Scholar 

  • Liu, L., Wan, W., Ning, B., Pirog, O.M., Kurkin, V.I.: Solar activity variations of the ionospheric peak electron density. J. Geophys. Res. 111, A08304 (2006)

    ADS  Google Scholar 

  • Liu, L., Wan, W., Chen, Y., Le, H.: Solar activity effects of the ionosphere: a brief review. Chin. Sci. Bull. 56, 1202 (2011)

    Article  Google Scholar 

  • Liu, J., Liu, L., Zhao, B., Wei, Y., Hu, L., Xiong, B.: High-speed stream impacts on the equatorial ionization anomaly region during the deep solar minimum year 2008. J. Geophys. Res. 117, A10304 (2012a)

    ADS  Google Scholar 

  • Liu, L., Yang, J., Le, H., Chen, Y., Wan, W., Lee, C.-C.: Comparative study of the equatorial ionosphere over Jicamarca during recent two solar minima. J. Geophys. Res. 117, A01315 (2012b)

    ADS  Google Scholar 

  • Maruyama, T.: A diagnostic model for equatorial spread F 1. Model description and applications to the electric field and neutral wind effects. J. Geophys. Res. 93, 14611 (1988)

    Article  ADS  Google Scholar 

  • Matamba, T.M., Habarulema, J.B.: Ionospheric responses to cme- and cir-driven geomagnetic storms along 30 _e–40 _e over the African sector from 2001 to 2015. Space Weather 16, 538 (2018)

    Article  ADS  Google Scholar 

  • Molina, M.G., Dasso, S., Mansilla, G., Namour, J.H., Cabrera, M.A., Zuccheretti, E.: Consequences of a solar wind stream interaction region on the low latitude ionosphere: event of 7 October 2015. Sol. Phys. 295, 173 (2020).

    Article  ADS  Google Scholar 

  • Negrea, C., Munteanu, C., Echim, M.M.: Global ionospheric response to a periodic sequence of HSS/CIR events during the 2007–2008 solar minimum. J. Geophys. Res. 126, e2020JA029071 (2021)

    Article  ADS  Google Scholar 

  • Nishida, A.: Coherence of geomagnetic DP2 fluctuations with interplanetary magnetic variations. J. Geophys. Res. 73, 5549 (1968)

    Article  ADS  Google Scholar 

  • Ogwala, A., Oyedokun, O.J., Akala, A.O., et al.: Characterization of ionospheric irregularities over the equatorial and low latitude Nigeria region. Astrophys. Space Sci. 367, 79 (2022). https://doi.org/10.1007/s10509-022-04110-0

    Article  ADS  Google Scholar 

  • Ossakow, S.L.: Spread-F theories—a review. J. Atmos. Sol.-Terr. Phys. 43, 437 (1981)

    Article  ADS  Google Scholar 

  • Prikryl, P., Provan, G., McWilliams, K.A., Yeoman, T.K.: Ionospheric cusp flows pulsed by solar wind Alfvén waves. Ann. Geophys. 20, 161 (2002)

    Article  ADS  Google Scholar 

  • Prölss, G.W.: On explaining the local time variation of ionospheric storm effects. Ann. Geophys. 11, 19 (1993)

    Google Scholar 

  • Pulkkinen, T.: Space weather: terrestrial perspective. Living Rev. Sol. Phys. 4, 1 (2007)

    Article  ADS  Google Scholar 

  • Rajana, S.S.K., Panda, S.K., Jade, S., Vivek, C.G., Upadhayaya, A.K., Bhardwaj, A., et al.: Impact of two severe geomagnetic storms on the ionosphere over Indian longitude sector during March-April 2023. Astrophys. Space Sci. 369, 3 (2024)

    Article  ADS  Google Scholar 

  • Ren, D., Lei, J., Wang, W., Burns, A., Luan, X., Dou, X.: A simulation study on the time delay of daytime thermospheric temperature response to the 27-day solar EUV flux variation. J. Geophys. Res. 124, 9184 (2019)

    Article  Google Scholar 

  • Richmond, A.D.: Joule heating in the thermosphere. In: Wang, W., Zhang, Y., Paxton, L.J. (eds.) Upper Atmosphere Dynamics and Energetics (2021)

    Google Scholar 

  • Rishbeth, H., Mendillo, M.: Patterns of F2-layer variability. J. Atmos. Sol.-Terr. Phys. 63, 1661 (2001)

    Article  ADS  Google Scholar 

  • Sastri, J.H., Jyoti, N., Somayajulu, V.V., Chandha, H., Devasia, C.V.: Ionospheric storm of early November 1993 in the Indian equatorial region. J. Geophys. Res. 105, 18443 (2000)

    Article  ADS  Google Scholar 

  • Schmölter, E., Berdermann, J., Jakowski, N., Jacobi, C., Vaishnav, R.: Delayed response of the ionosphere to solar EUV variability. Adv. Radio Sci. 16, 149 (2018)

    Article  ADS  Google Scholar 

  • Seba, E.B., Nigussie, M., Moldwin, M.B.: The relationship between equatorial ionization anomaly and nighttime equatorial spread F in East Africa. Adv. Space Res. 62, 1737 (2018)

    Article  ADS  Google Scholar 

  • Silva, R.P., Sobral, J.H.A., Koga, D., Souza, J.R.: Evidence of prompt penetration electric fields during HILDCAA events. Ann. Geophys. 35, 1165 (2017)

    Article  ADS  Google Scholar 

  • Silva, R.P., Denardini, C.M., Marques, M.S., Resende, L.C.A., Moro, J., Silva Picanço, G.A.D., Santos, M.A.F.D.: Ionospheric total electron content responses to HILDCAA intervals. Ann. Geophys. 38, 27 (2020)

    Article  ADS  Google Scholar 

  • Silva, R.P., Borba, G.L., Campelo, J.F.B., do Carmo, C. de S., Chen, S.S., Denardini, C.M., et al.: Latitudinal responses of the ionosphere over South America during HILDCAA intervals: case studies. Adv. Space Res. 71, 5185 (2023)

    Article  ADS  Google Scholar 

  • Smith, J.M., Rodrigues, F.S., Fejer, B.G., Milla, M.A.: Coherent and incoherent scatter radar study of the climatology and day-to-day variability of mean F region vertical drifts and equatorial spread F. J. Geophys. Res. 121, 1466 (2016)

    Article  Google Scholar 

  • Sobral, J.H.A., Abdu, M.A., Barbosa, I.G., Daniela, D.C.S., da Silva, R.R.L., Denardini, A.C.M., Gonzalez, A.C., et al.: Equatorial ionospheric reponses to high-intensity long-duration auroral electrojet activity (HILDCAA). J. Geophys. Res. 111, A07S02 (2006)

    Google Scholar 

  • Sripathi, S., Singh, R., Banola, S., Singh, D., Sathish, S.: The response of the equatorial ionosphere to fast stream solar coronal holes during 2008 deep solar minimum over Indian region. J. Geophys. Res. 121, 841 (2016). https://doi.org/10.1002/2015JA021534

    Article  Google Scholar 

  • Sultan, P.J.: Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F. J. Geophys. Res. 101, 26,875–26,891 (1996)

    Article  ADS  Google Scholar 

  • Thayer, J.P., Lei, J., Forbes, J.M., Sutton, E.K., Nerem, R.S.: Thermospheric density oscillations due to periodic solar wind high-speed streams. J. Geophys. Res. 113, A06307 (2008)

    ADS  Google Scholar 

  • Tian, Y., Hao, Y., Li, Q., Guo, J., Zhang, X., Zhang, D., Xiao, Z.: The role of strong meridional neutral winds in the formation of deep equatorial ionization trough in CHAMP observations. J. Geophys. Res. 126, e2021JA029319 (2021)

    Article  ADS  Google Scholar 

  • Troshichev, O., Andrezen, V., Vennerstrøm, S., Friis-Christensen, E.: Magnetic activity in the polar cap—a new index. Planet. Space Sci. 36, 1095 (1988)

    Article  ADS  Google Scholar 

  • Tsagouri, I.: Space weather effects on the Earth’s upper atmosphere: short report on ionospheric storm effects at middle latitudes. Atmosphere 13, 346 (2022). https://doi.org/10.3390/atmos13020346

    Article  ADS  Google Scholar 

  • Tsunoda, R.T.: Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region Pedersen conductivity. J. Geophys. Res. 90, 447 (1985)

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D.: The cause of high-intensity long-duration continuous \(AE\) activity (HILDCAAS) - interplanetary Alfvén wave trains. Planet. Space Sci. 35, 405 (1987)

    Article  ADS  Google Scholar 

  • Tulasi Ram, S., Yamamoto, M., Veenadhari, B., Kumar, S., Gurubaran, S.: Corotating interaction regions (CIRs) at sub-harmonic solar rotational periods and their impact on ionosphere and thermoshere system during the extreme low solar activity year 2008. Indian J. Radio Space Phys. 41, 294 (2012)

    Google Scholar 

  • Vaishnav, R., Jacobi, C., Berdermann, J., Schmölter, E., Dühnen, H., Codrescu, M.: Ionospheric response to solar EUV radiation variations using GOLD observations and the CTIPe model. J. Geophys. Res. 129, e2022JA030887 (2024)

    Article  ADS  Google Scholar 

  • Verkhoglyadova, O., Emery, B.A., Hajra, R., Hunt, L., Mannucci, A., Meng, X., et al.: Estimation of energy budget of ionospherethermosphere system during two CIR-HSS events: observations and modeling. J. Space Weather Space Clim. 6, A20 (2016)

    Article  Google Scholar 

  • Yao, Y., Zhai, C., Kong, J., Liu, L.: Contribution of solar radiation and geomagnetic activity to global structure of 27-day variation of ionosphere. J. Geod. 91, 1299 (2017)

    Article  ADS  Google Scholar 

  • Yeeram, T.: Interplanetary drivers of daytime penetration electric field into equatorial ionosphere during CIR-induced geomagnetic storms. J. Atmos. Sol.-Terr. Phys. 6, 157 (2017)

    Google Scholar 

  • Yeeram, T.: The solar wind-magnetosphere coupling and daytime disturbance electric fields in equatorial ionosphere during consecutive recurrent geomagnetic storms. J. Atmos. Sol.-Terr. Phys. 187, 40 (2019)

    Article  ADS  Google Scholar 

  • Yeeram, T., Paratrasri, A.: Recurrent geomagnetic storms and equinoctial ionospheric F-region in the low magnetic latitude: a case study. J. Phys. Conf. Ser. 012024 (2018)

  • Zesta, E., Oliveira, D.M.: Thermospheric heating and cooling times during geomagnetic storms, including extreme events. Geophys. Res. Lett. 46, 12739 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Mahasarakham University. The author is grateful to the Jicamarca Radio Observatory which is a facility of the Instituto Geofisico del Peru operated with support from the NSF AGS-0905448 through Cornell University. The digisonde data are kindly provided by Global Ionosphere Radio Observatory (giro.uml.edu). The ionograms were taken from Lowell Digisonde International. The OMNI data were obtained from the GSFC/SPDF OMNIWeb interface (https://omniweb.gsfc.nasa.gov/). Geomagnetic indices are provided by the World Data Center for Geomagnetisms, Kyoto (http://wdc.kugi.kyoto-u.ac.jp). The data of solar EUV flux are obtained from the SEM/SOHO experiment. The author wishes to thank the reviewers for giving constructive comments that have led to notable improvement in the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Thana Yeeram analyzed data and write all parts of this manuscript.

Corresponding author

Correspondence to Thana Yeeram.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeeram, T. The effects of solar radiation and geomagnetic disturbance during consecutive 27-day recurrent geomagnetic storms on variations of equatorial ionospheric parameters and spread F. Astrophys Space Sci 369, 62 (2024). https://doi.org/10.1007/s10509-024-04327-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-024-04327-1

Keywords

Navigation