Skip to main content
Log in

Cosmological dynamics of accelerating model in \(f(Q)\) gravity with latest observational data

  • Research
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

In the current study, we have considered three different parameterizations of deceleration parameter to describe the cosmological dynamics of the accelerating universe in \(f(Q)\) gravity. The power law symmetric teleparallel gravity with a specific form \(f(Q)= Q + n Q^{m}\) is assumed for the modelling purpose. Here, \(m\) and \(n\) are constants and \(Q\) is the non-metricity term that describes the gravitational interaction in space time. We constructed the field equations depending on the power law \(f(Q)\) gravity and parameters are extracted using experimental observations. Latest observational datasets of BAO, \(H(z)\) and Pantheon are utilized to predict the best fit values of parameters and current value of Hubble constant. The Markov Chain Monte Carlo (MCMC) algorithm has been used to decide the best plausible values of parameters. We numerically represent the physical and geometrical features of the models and thoroughly explore their development. We analyzed our models using the jerk and Om diagnosis that depict the derived cosmic models are different from the \(\Lambda \)CDM model expressing late time accelerated expansion of cosmos with phantom type of the universe. We also discussed the viability of models by the analysis of energy conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  • Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)

    ADS  MathSciNet  Google Scholar 

  • Alam, U., Sahni, V., Saini, T.D., et al.: Exploring the expanding universe and dark energy using the statefinder diagnostic. Mon. Not. R. Astron. Soc. 344(4), 1057–1074 (2003)

    ADS  Google Scholar 

  • Alam, S., Ata, M., et al.: The clustering of galaxies in the completed sdss-iii baryon oscillation spectroscopic survey: cosmological analysis of the dr12 galaxy sample. Mon. Not. R. Astron. Soc. 470(3), 2617–2652 (2017)

    ADS  Google Scholar 

  • Anagnostopoulos, F.K., Basilakos, S., Saridakis, E.N.: Observational constraints on barrow holographic dark energy. Eur. Phys. J. C 80(9), 826 (2020)

    ADS  Google Scholar 

  • Anderson, L., Aubourg, E., et al.: The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: baryon acoustic oscillations in the data releases 10 and 11 galaxy samples. Mon. Not. R. Astron. Soc. 441(1), 24–62 (2014)

    ADS  Google Scholar 

  • Ayuso, I., Lazkoz, R., Salzano, V.: Observational constraints on cosmological solutions of f (q) theories. Phys. Rev. D 103(6), 063505 (2021)

    ADS  MathSciNet  Google Scholar 

  • Banerjee, N., Das, S.: Acceleration of the universe with a simple trigonometric potential. Gen. Relativ. Gravit. 37, 1695–1703 (2005)

    ADS  MathSciNet  Google Scholar 

  • Beutler, F., Blake, C., Colless, M., et al.: The 6df galaxy survey: baryon acoustic oscillations and the local Hubble constant. Mon. Not. R. Astron. Soc. 416(4), 3017–3032 (2011)

    ADS  Google Scholar 

  • Bhardwaj, V.K.: Current observation constraints on hybrid potential scalar field cosmological model in lyra geometry (2023a). ArXiv preprint arXiv:2309.10282

  • Bhardwaj, V.K.: Observation constraints on scalar field cosmological model in anisotropic universe (2023b). ArXiv preprint arXiv:2308.02864

  • Bhardwaj, V.K., Garg, P.: Exploring the cosmological model in f (r, t\(\phi \)) gravity with observational constraints. New Astron. 105, 102101 (2024)

    Google Scholar 

  • Bhardwaj, V.K., Prakash, S.: Observational constraints on anisotropic cosmological model in lyra’s manifold. Chin. J. Phys. 87, 665–676 (2024)

    MathSciNet  Google Scholar 

  • Bhardwaj, V.K., Rana, M.K.: Lrs Bianchi-i transit universe with periodic varying q in f (r, t) gravity. Int. J. Geom. Methods Mod. Phys. 16(12), 1950195 (2019)

    MathSciNet  Google Scholar 

  • Bhardwaj, V.K., Garg, P., Pradhan, A., et al.: Corrected holographic dark energy with power-law entropy and Hubble horizon cut-off in frw universe. Chin. J. Phys. 79, 471–480 (2022)

    MathSciNet  Google Scholar 

  • Blake, C., Brough, S., Colless, M., et al.: The wigglez dark energy survey: joint measurements of the expansion and growth history at z< 1. Mon. Not. R. Astron. Soc. 425(1), 405–414 (2012)

    ADS  Google Scholar 

  • Burnham, K.P., Anderson, D.R.: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, Berlin (2002)

    Google Scholar 

  • Burnham, K.P., Anderson, D.R.: Multimodel inference: understanding aic and bic in model selection. Sociol. Methods Res. 33(2), 261–304 (2004)

    MathSciNet  Google Scholar 

  • Caldwell, R.R., Doran, M.: Cosmic microwave background and supernova constraints on quintessence: concordance regions and target models. Phys. Rev. D 69(10), 103517 (2004)

    ADS  Google Scholar 

  • Capozziello, S., D’Agostino, R.: Model-independent reconstruction of f (q) non-metric gravity. Phys. Lett. B 832, 137229 (2022)

    MathSciNet  Google Scholar 

  • Capozziello, S., Farooq, O., Luongo, O., et al.: Cosmographic bounds on the cosmological deceleration-acceleration transition redshift in f (r) gravity. Phys. Rev. D 90(4), 044016 (2014)

    ADS  Google Scholar 

  • Capozziello, S., Dunsby, P.K., Luongo, O.: Model-independent reconstruction of cosmological accelerated–decelerated phase. Mon. Not. R. Astron. Soc. 509(4), 5399–5415 (2022a)

    ADS  Google Scholar 

  • Capozziello, S., D’Agostino, R., Luongo, O.: Thermodynamic parametrization of dark energy. Phys. Dark Universe 36, 101045 (2022b)

    Google Scholar 

  • Cunha, J., Lima, J.A.S.: Transition redshift: new kinematic constraints from supernovae. Mon. Not. R. Astron. Soc. 390(1), 210–217 (2008)

    ADS  Google Scholar 

  • D’Agostino, R., Nunes, R.C.: Forecasting constraints on deviations from general relativity in f (q) gravity with standard sirens. Phys. Rev. D 106(12), 124053 (2022)

    ADS  MathSciNet  Google Scholar 

  • Daniel, S.F., Caldwell, R.R., Cooray, A., et al.: Large scale structure as a probe of gravitational slip. Phys. Rev. D 77(10), 103513 (2008)

    ADS  Google Scholar 

  • Davis, T.M., Mörtsell, E., Sollerman, J., et al.: Scrutinizing exotic cosmological models using essence supernova data combined with other cosmological probes. Astrophys. J. 666(2), 716 (2007)

    ADS  Google Scholar 

  • Eisenstein, D.J., Zehavi, I., Hogg, D.W., et al.: Detection of the baryon acoustic peak in the large-scale correlation function of sdss luminous red galaxies. Astrophys. J. 633(2), 560 (2005)

    ADS  Google Scholar 

  • Escamilla-Rivera, C., Nájera, A.: Dynamical dark energy models in the light of gravitational-wave transient catalogues. J. Cosmol. Astropart. Phys. 2022(03), 060 (2022)

    MathSciNet  Google Scholar 

  • Farooq, O., Ratra, B.: Hubble parameter measurement constraints on the cosmological deceleration–acceleration transition redshift. Astrophys. J. Lett. 766(1), L7 (2013)

    ADS  Google Scholar 

  • Gadbail, G.N., Mandal, S., Sahoo, P.K.: Parametrization of deceleration parameter in f (q) gravity. Physics 4(4), 1403–1412 (2022)

    ADS  Google Scholar 

  • Garg, P., Bhardwaj, V.K.: Stability of power law cosmological model in f (q) gravity. Can. J. Phys. 102(2), 119–126 (2023)

    ADS  Google Scholar 

  • Ghosh, S., Solanki, R., Sahoo, P.: Dynamical system analysis of scalar field cosmology in coincident \(f (q) \) gravity (2023). ArXiv preprint arXiv:2309.11198

  • Giostri, R., dos Santos, M.V., Waga, I., et al.: From cosmic deceleration to acceleration: new constraints from sn ia and bao/cmb. J. Cosmol. Astropart. Phys. 2012(03), 027 (2012)

    Google Scholar 

  • Gomes, D.A., Jiménez, J.B., Cano, A.J., et al.: Pathological character of modifications to coincident general relativity: cosmological strong coupling and ghosts in f (q) theories. Phys. Rev. Lett. 132(14), 141401 (2024)

    MathSciNet  Google Scholar 

  • Harko, T., Koivisto, T.S., Lobo, F.S., et al.: Coupling matter in modified q gravity. Phys. Rev. D 98(8), 084043 (2018)

    ADS  MathSciNet  Google Scholar 

  • Heisenberg, L.: Review on f (q) gravity. Phys. Rep. 1066, 1–78 (2024)

    MathSciNet  Google Scholar 

  • Heisenberg, L., Hohmann, M., Kuhn, S.: Cosmological teleparallel perturbations. J. Cosmol. Astropart. Phys. 2024(03), 063 (2024)

    MathSciNet  Google Scholar 

  • Hohmann, M.: General covariant symmetric teleparallel cosmology. Phys. Rev. D 104(12), 124077 (2021)

    ADS  MathSciNet  Google Scholar 

  • Huang, Z.Y., Wang, B., Abdalla, E., et al.: Holographic explanation of wide-angle power correlation suppression in the cosmic microwave background radiation. J. Cosmol. Astropart. Phys. 2006(05), 013 (2006)

    Google Scholar 

  • Jiménez, J.B., Heisenberg, L., Koivisto, T.: Coincident general relativity. Phys. Rev. D 98(4), 044048 (2018)

    ADS  MathSciNet  Google Scholar 

  • Jiménez, J.B., Heisenberg, L., Koivisto, T., et al.: Cosmology in f (q) geometry. Phys. Rev. D 101(10), 103507 (2020)

    ADS  MathSciNet  Google Scholar 

  • Khyllep, W., Paliathanasis, A., Dutta, J.: Cosmological solutions and growth index of matter perturbations in f (q) gravity. Phys. Rev. D 103(10), 103521 (2021)

    ADS  MathSciNet  Google Scholar 

  • Koivisto, T., Mota, D.F.: Dark energy anisotropic stress and large scale structure formation. Phys. Rev. D 73(8), 083502 (2006)

    ADS  MathSciNet  Google Scholar 

  • Koussour, M., Shekh, S., Bennai, M.: Anisotropic nature of space–time in fq gravity. Phys. Dark Universe 36, 101051 (2022)

    Google Scholar 

  • Kumar, A., Singh, C.: Observational constraints on holographic dark energy model with matter creation. Astrophys. Space Sci. 365(5), 84 (2020)

    ADS  MathSciNet  Google Scholar 

  • Lazkoz, R., Lobo, F.S., Ortiz-Baños, M., et al.: Observational constraints of f (q) gravity. Phys. Rev. D 100(10), 104027 (2019)

    ADS  MathSciNet  Google Scholar 

  • Liddle, A.R.: Information criteria for astrophysical model selection. Mon. Not. R. Astron. Soc. Lett. 377(1), L74–L78 (2007)

    ADS  Google Scholar 

  • Lima, J., Jesus, J., Santos, R., et al.: Is the transition redshift a new cosmological number? (2012). ArXiv preprint arXiv:1205.4688

  • Lin, R.H., Zhai, X.H.: Spherically symmetric configuration in f (q) gravity. Phys. Rev. D 103(12), 124001 (2021)

    ADS  MathSciNet  Google Scholar 

  • Lu, J., Xu, L., Liu, M.: Constraints on kinematic models from the latest observational data. Phys. Lett. B 699(4), 246–250 (2011)

    ADS  Google Scholar 

  • Magaña, J., Cárdenas, V.H., Motta, V.: Cosmic slowing down of acceleration for several dark energy parametrizations. J. Cosmol. Astropart. Phys. 2014(10), 017 (2014)

    Google Scholar 

  • Mamon, A.A.: Constraints on a generalized deceleration parameter from cosmic chronometers. Mod. Phys. Lett. A 33(10n11), 1850056 (2018)

    ADS  Google Scholar 

  • Mamon, A.A., Bamba, K., Das, S.: Constraints on reconstructed dark energy model from sn ia and bao/cmb observations. Eur. Phys. J. C 77(1), 29 (2017)

    ADS  Google Scholar 

  • Mandal, S., Sahoo, P., Santos, J.R.: Energy conditions in f (q) gravity. Phys. Rev. D 102(2), 024057 (2020)

    ADS  MathSciNet  Google Scholar 

  • Mandal, S., Myrzakulov, N., Sahoo, P., et al.: Cosmological bouncing scenarios in symmetric teleparallel gravity. Eur. Phys. J. Plus 136(7), 1–13 (2021)

    Google Scholar 

  • Nagpal, R., Singh, J., Beesham, A., et al.: Cosmological aspects of a hyperbolic solution in f (r, t) gravity. Ann. Phys. 405, 234–255 (2019)

    ADS  MathSciNet  Google Scholar 

  • Nair, R., Jhingan, S., Jain, D.: Cosmokinetics: a joint analysis of standard candles, rulers and cosmic clocks. J. Cosmol. Astropart. Phys. 2012(01), 018 (2012)

    ADS  Google Scholar 

  • Narawade, S.A., Mishra, B.: Phantom cosmological model with observational constraints in f (q) f(q) gravity. Ann. Phys. 535(5), 2200626 (2023)

    Google Scholar 

  • Nester, J.M., Yo, H.J.: Symmetric teleparallel general relativity (1998). ArXiv preprint arXiv:gr-qc/9809049

  • Pacif, S.: Dark energy models from a parametrization of h: a comprehensive analysis and observational constraints. Eur. Phys. J. Plus 135(10), 1–34 (2020)

    ADS  Google Scholar 

  • Padmanabhan, N., Xu, X., Eisenstein, D.J., et al.: A 2 per cent distance to z= 0.35 by reconstructing baryon acoustic oscillations–i. Methods and application to the sloan digital sky survey. Mon. Not. R. Astron. Soc. 427(3), 2132–2145 (2012)

    ADS  Google Scholar 

  • Peebles, P.J.E., Ratra, B.: The cosmological constant and dark energy. Rev. Mod. Phys. 75(2), 559 (2003)

    ADS  MathSciNet  Google Scholar 

  • Percival, W.J., Reid, B.A., Eisenstein, D.J., et al.: Baryon acoustic oscillations in the sloan digital sky survey data release 7 galaxy sample. Mon. Not. R. Astron. Soc. 401(4), 2148–2168 (2010)

    ADS  Google Scholar 

  • Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    ADS  Google Scholar 

  • Prasad, R., Yadav, A.K., Yadav, A.K.: Constraining Bianchi type v universe with recent h (z) and Bao observations in Brans–Dicke theory of gravitation. Eur. Phys. J. Plus 135(3), 1–16 (2020)

    Google Scholar 

  • Rana, D.S., Solanki, R., Sahoo, P.: Phase-space analysis of the viscous fluid cosmological models in the coincident f (q) gravity. Phys. Dark Universe 43, 101421 (2024)

    Google Scholar 

  • Rapetti, D., Allen, S.W., Amin, M.A., et al.: A kinematical approach to dark energy studies. Mon. Not. R. Astron. Soc. 375(4), 1510–1520 (2007)

    ADS  Google Scholar 

  • Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116(3), 1009 (1998)

    ADS  Google Scholar 

  • Ross, A.J., Samushia, L., Howlett, C., et al.: The clustering of the sdss dr7 main galaxy sample–i. A 4 per cent distance measure at z= 0.15. Mon. Not. R. Astron. Soc. 449(1), 835–847 (2015)

    ADS  Google Scholar 

  • Sahni, V., Saini, T.D., Starobinsky, A.A., et al.: Statefinder—a new geometrical diagnostic of dark energy. JETP Lett. 77, 201–206 (2003)

    ADS  Google Scholar 

  • Sahoo, P., De, A., Loo, T.H., et al.: Periodic cosmic evolution in f (q) gravity formalism. Commun. Theor. Phys. 74(12), 125402 (2022)

    ADS  MathSciNet  Google Scholar 

  • Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978)

    MathSciNet  Google Scholar 

  • Scolnic, D.M., Jones, D., Rest, A., et al.: The complete light-curve sample of spectroscopically confirmed sne ia from pan-starrs1 and cosmological constraints from the combined pantheon sample. Astrophys. J. 859(2), 101 (2018)

    ADS  Google Scholar 

  • Shafieloo, A., Kim, A.G., Linder, E.V.: Model independent tests of cosmic growth versus expansion. Phys. Rev. D 87(2), 023520 (2013)

    ADS  Google Scholar 

  • Shahalam, M., Sami, S., Agarwal, A.: Om diagnostic applied to scalar field models and slowing down of cosmic acceleration. Mon. Not. R. Astron. Soc. 448(3), 2948–2959 (2015)

    ADS  Google Scholar 

  • Sharma, L.K., Yadav, A.K., Singh, B.: Power-law solution for homogeneous and isotropic universe in f (r, t) gravity. New Astron. 79, 101396 (2020)

    Google Scholar 

  • Solanki, R., Sahoo, P.: Statefinder analysis of symmetric teleparallel cosmology. Ann. Phys. 534(6), 2200076 (2022)

    MathSciNet  Google Scholar 

  • Solanki, R., Pacif, S., Parida, A., et al.: Cosmic acceleration with bulk viscosity in modified f (Q) gravity. Phys. Dark Universe 32, 100820 (2021)

    Google Scholar 

  • Solanki, R., De, A., Sahoo, P.: Complete dark energy scenario in f (Q) gravity. Phys. Dark Universe 36, 100996 (2022)

    Google Scholar 

  • Solanki, R., Rana, D.S., Mandal, S., et al.: Viscous fluid cosmology in symmetric teleparallel gravity. Fortschr. Phys. 71(8-9), 2200202 (2023)

    MathSciNet  Google Scholar 

  • Soudi, I., Farrugia, G., Said, J.L., et al.: Polarization of gravitational waves in symmetric teleparallel theories of gravity and their modifications. Phys. Rev. D 100(4), 044008 (2019)

    ADS  MathSciNet  Google Scholar 

  • Visser, M.: Jerk, snap and the cosmological equation of state. Class. Quantum Gravity 21(11), 2603 (2004)

    ADS  MathSciNet  Google Scholar 

  • Xu, L., Liu, H.: Constraints to deceleration parameters by recent cosmic observations. Mod. Phys. Lett. A 23(23), 1939–1948 (2008)

    ADS  Google Scholar 

  • Xu, Y., Li, G., Harko, T., et al.: Regular article-theoretical physics. Eur. Phys. J. C 79, 708 (2019)

    ADS  Google Scholar 

  • Yadav, A.K., Sharma, L.K., Singh, B., et al.: Existence of bulk viscous universe in f (r, t) gravity and confrontation with observational data. New Astron. 78, 101382 (2020)

    Google Scholar 

  • Yadav, A.K., Alshehri, A., Ahmad, N., et al.: Transitioning universe with hybrid scalar field in Bianchi i space–time. Phys. Dark Universe 31, 100738 (2021)

    Google Scholar 

  • Yu, H., Ratra, B., Wang, F.Y.: Hubble parameter and baryon acoustic oscillation measurement constraints on the Hubble constant, the deviation from the spatially flat \(\lambda \)cdm model, the deceleration–acceleration transition redshift, and spatial curvature. Astrophys. J. 856(1), 3 (2018)

    ADS  Google Scholar 

Download references

Acknowledgement

The authors wish to express their sincere thanks to esteemed Reviewers and Editors for their constructive comments and suggestions that helped us in the improvement of quality of our work.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

1 Vinod Kumar Bhardwaj: Conceptualization, Formulation, Writing - original draft. 2 Priyanka Garg: Formal analysis, Writing-review & editing. 3 Suraj Prakash: Methodology, Writing-review & editing, Supervision.

Corresponding author

Correspondence to Vinod Kumar Bhardwaj.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, V.K., Garg, P. & Prakash, S. Cosmological dynamics of accelerating model in \(f(Q)\) gravity with latest observational data. Astrophys Space Sci 369, 50 (2024). https://doi.org/10.1007/s10509-024-04315-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-024-04315-5

Keywords

Navigation