Skip to main content
Log in

An optimal deployment strategy for multi-plane satellite constellation using a generalized non-planar maneuver

  • Research
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Satellite constellation deployment is a cohesive mission where the trajectories of satellites must be planned concurrently. This paper presents an Integrated Program for Optimal Deployment of a Satellite Constellation (PODSC) consisting of \(m\) non-identical satellites in any desired arrangement in \(n\) orbital planes. The PODSC can optimize the scheduling of mission timelines, ensuring effective coordination with the trajectory of each satellite. This involves meticulous planning that considers temporal constraints and regards collision avoidance constraint. Additionally, the PODSC can select the most favorable deployment strategy, considering the trade-offs between time and fuel consumption across all possible deployment methods. The PODSC also utilizes an innovative Perturbed Multi-impulsive Inclined transfer trajectory Amalgamated with a modified Lambert targeting problem (PMIAL). The main idea of designing the mentioned maneuver is to eliminate the defects of the Lambert Targeting Problem (LTP). The LTP cannot account for space perturbations. Moreover, the LTP faces challenges when attempting to align the transfer trajectory tangentially with the final orbit in situations where there exists a substantial disparity in inclination and right ascension between the initial and final orbits. The PMIAL establishes three consecutive steps to fix the mentioned defects. Balancing the trade-off between time and achieving optimal fuel consumption will be possible by applying a hybrid IWO/PSO (The hybrid Invasive Weed Optimization/Particle Swarm Optimization) optimization algorithm in both PMIAL and PODSC. The case study will involve simulating two constellation deployment missions, with a particular focus on considering the Earth’s oblateness as a notable perturbation; however, the proposed algorithms can consider any space perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  • Abbasali, E., Kosari, A., Bakhtiari, M.: Effects of oblateness of the primaries on natural periodic orbit-attitude behaviour of satellites in three body problem. Adv. Space Res. (2021)

  • Ansari, K., Park, K.-D.: Multi constellation GNSS precise point positioning and prediction of propagation errors using singular spectrum analysis. Astrophys. Space Sci. 363, 1–7 (2018)

    Article  Google Scholar 

  • Appel, L., Guelman, M., Mishne, D.: Optimization of satellite constellation reconfiguration maneuvers. Acta Astronaut. 99, 166–174 (2014)

    Article  ADS  Google Scholar 

  • Arnas, D., Linares, R.: Uniform satellite constellation reconfiguration. J. Guid. Control Dyn., 1–14 (2022)

  • Bainum, P.M., Strong, A., Tan, Z., Capó-Lugo, P.A.: Techniques for deploying elliptically orbiting constellations in along-track formation. Acta Astronaut. 57, 685–697 (2005)

    Article  ADS  Google Scholar 

  • Bakhtiari, M., Daneshjou, K., Abbasali, E.: A new approach to derive a formation flying model in the presence of a perturbing body in inclined elliptical orbit: relative hovering analysis. Astrophys. Space Sci. 362 (2017). https://doi.org/10.1007/s10509-016-2968-9

  • Bakhtiari, M., Abbasali, E., Daneshjoo, K.: Minimum cost perturbed multi-impulsive maneuver methodology to accomplish an optimal deployment scheduling for a satellite constellation. J. Astronaut. Sci. 70, 18 (2023a)

    Article  ADS  Google Scholar 

  • Bakhtiari, M., Abbasali, E., Sabzy, S., Kosari, A.: Natural coupled orbit—attitude periodic motions in the perturbed-CRTBP including radiated primary and oblate secondary. Astrodynamics 7, 229–249 (2023b)

    Article  ADS  Google Scholar 

  • Budianto, I.A., Olds, J.R.: Design and deployment of a satellite constellation using collaborative optimization. J. Spacecr. Rockets 41, 956–963 (2004)

    Article  ADS  Google Scholar 

  • Casanova, D., Avendano, M.E., Mortari, D.: Design of flower constellations using necklaces. IEEE Trans. Aerosp. Electron. Syst. 50, 1347–1358 (2014)

    Article  ADS  Google Scholar 

  • Cuollo, M., Ortore, E., Bunkheila, F., Ulivieri, C.: Interlink and coverage analysis for small satellite constellations. Proc. Inst. Mech. Eng., G J. Aerosp. Eng. 227, 1201–1212 (2013)

    Article  Google Scholar 

  • Curtis, H.D.: Orbital Mechanics for Engineering Students. Butterworth, Stoneham (2013)

    Google Scholar 

  • De Weck, O.L., De Neufville, R., Chaize, M.: Staged deployment of communications satellite constellations in low Earth orbit. J. Aerosp. Comput. Inf. Commun. 1, 119–136 (2004)

    Article  Google Scholar 

  • Del Portillo, I., Cameron, B.G., Crawley, E.F.: A technical comparison of three low Earth orbit satellite constellation systems to provide global broadband. Acta Astronaut. 159, 123–135 (2019)

    Article  ADS  Google Scholar 

  • Di Carlo, M., Ricciardi, L.A., Vasile, M.: Multi-objective optimisation of constellation deployment using low-thrust propulsion. In: AIAA/AAS Astrodynamics Specialist Conference, p. 5577 (2016)

    Google Scholar 

  • Fakoor, M., Bakhtiari, M., Soleymani, M.: Optimal design of the satellite constellation arrangement reconfiguration process. Adv. Space Res. 58, 372–386 (2016)

    Article  ADS  Google Scholar 

  • Garcia, I., How, J.P.: Trajectory optimization for satellite reconfiguration maneuvers with position and attitude constraints. In: Proceedings of the 2005, American Control Conference, 2005, pp. 889–894. IEEE, Los Alamitos (2005)

    Chapter  Google Scholar 

  • Ha, S.N.: A nonlinear shooting method for two-point boundary value problems. Comput. Math. Appl. 42, 1411–1420 (2001)

    Article  MathSciNet  Google Scholar 

  • Hajimirsadeghi, H., Lucas, C.: A hybrid IWO/PSO algorithm for fast and global optimization. In: IEEE EUROCON 2009, pp. 1964–1971. IEEE, Los Alamitos (2009)

    Chapter  Google Scholar 

  • He, X., Li, H., Yang, L., Zhao, J.: Reconfigurable satellite constellation design for disaster monitoring using physical programming. Int. J. Aerosp. Eng. 2020 (2020)

  • Lee, Y., Choi, J.P.: Connectivity analysis of mega-constellation satellite networks with optical intersatellite links. IEEE Trans. Aerosp. Electron. Syst. 57, 4213–4226 (2021)

    Article  ADS  Google Scholar 

  • Liu, S., Meng, T., Jin, Z., Song, R.: Optimal deployment of heterogeneous microsatellite constellation based on Kuhn-Munkres and simulated annealing algorithms. J. Aerosp. Eng. 35, 4022090 (2022)

    Article  Google Scholar 

  • Mahdisoozani, H., Bakhtiari, M., Daneshjoo, K.: Developing novel multi-plane satellite constellation deployment methods using the concept of nodal precession. Adv. Space Res. (2021)

  • McGrath, C.N., Macdonald, M.: General perturbation method for satellite constellation reconfiguration using low-thrust maneuvers. J. Guid. Control Dyn. 42, 1676–1692 (2019)

    Article  ADS  Google Scholar 

  • McLemore, B., Psiaki, M.: Navigation using Doppler shift from LEO constellations and INS data. IEEE Trans. Aerosp. Electron. Syst. (2022)

  • Morgan, S.J., McGrath, C., De Weck, O.L.: Mobile target tracking using a reconfigurable low Earth orbit constellation. In: ASCEND 2020, p. 4247 (2020)

    Google Scholar 

  • Mushet, G., Mingotti, G., Colombo, C., McInnes, C.: Self-organising satellite constellation in geostationary Earth orbit. IEEE Trans. Aerosp. Electron. Syst. 51, 910–923 (2015)

    Article  ADS  Google Scholar 

  • Ortore, E., Ulivieri, C., Bunkheila, F.: Satellite constellations in inclined multi-stationary orbits. Proc. Inst. Mech. Eng., G J. Aerosp. Eng. 225, 1050–1060 (2011)

    Article  Google Scholar 

  • Pachler, N., del Portillo, I., Crawley, E.F., Cameron, B.G.: An updated comparison of four low Earth orbit satellite constellation systems to provide global broadband. In: 2021 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1–7. IEEE, Los Alamitos (2021)

    Google Scholar 

  • Shtark, T., Gurfil, P.: Position and velocity estimation with a low Earth orbit regional navigation satellite constellation. Proc. Inst. Mech. Eng., G J. Aerosp. Eng. 236, 1375–1387 (2022)

    Article  Google Scholar 

  • Soleymani, M., Fakoor, M., Bakhtiari, M.: Optimal mission planning of the reconfiguration process of satellite constellations through orbital maneuvers: a novel technical framework. Adv. Space Res. 63, 3369–3384 (2019)

    Article  ADS  Google Scholar 

  • Toth, V.T.: Gravitational anomaly detection using a satellite constellation: analysis and simulation. Astrophys. Space Sci. 368, 92 (2023)

    Article  ADS  Google Scholar 

  • Wang, J., Liang, B.: 4-GNSS radio occultation satellite constellation design based on Dual-gate uniformity evaluation index. Proc. Inst. Mech. Eng., G J. Aerosp. Eng. 231, 3–16 (2017)

    Article  Google Scholar 

  • Zuo, X., Bai, X., Xu, M., Li, M., Zhou, J., Yu, L., Zhang, J.: Satellite constellation reconfiguration using surrogate-based optimization. J. Aerosp. Eng. 35, 4022043 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Majid Bakhtiari gave the main idea of the article and reviewed the past studies, also validated the results of this article and corrected the English language of the article. Ehsan Abbasali did the coding and simulation of the article and wrote the text of the article

Corresponding author

Correspondence to Majid Bakhtiari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhtiari, M., Abbasali, E. An optimal deployment strategy for multi-plane satellite constellation using a generalized non-planar maneuver. Astrophys Space Sci 369, 26 (2024). https://doi.org/10.1007/s10509-024-04288-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-024-04288-5

Keywords

Navigation