Skip to main content
Log in

Collision properties of overtaking magnetosonic solitary waves in the ionospheric multi-ion plasmas

  • Research
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We study the magnetosonic waves (MWs) propagating in magnetized plasmas comprising light warm ions, cold heavy ions and hot electrons at the Earth’s ionosphere. The dispersion relation is given and the effects of different physical parameters on the frequency of fast and slow MSWs are shown. We derive a KdV equation for the MSWs in multi-ion plasma and study the two-soliton and three-soliton overtaking collision of KdV MSWs by Hirota’s bilinear method. We show the trajectories and amplitude of solitons in this process, and the phase shift after collision. It is found that when solitons merge, it will form a new soliton whose amplitude first decreases then increases. The effects of physical parameters on the phase shift of multi-soliton collision are presented. It is worth noting that the solitons’ interaction can result in the redistribution of momentum and energy in the plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  • Abdikian, A.: Phys. Plasmas 25, 022308 (2018)

    ADS  Google Scholar 

  • Afify, M.S., Moslem, W.M., Hassouba, M.A., Hassan, A.A.-E.: Phys. Plasmas 25, 052116 (2018)

    ADS  Google Scholar 

  • Ali, S.: Phys. Plasmas 26, 052102 (2019)

    ADS  Google Scholar 

  • Afify, M.S., Elkamash, I.S., Shihab, M., Moslem, W.M.: Phys. Plasmas 67, 4110 (2021)

    CAS  Google Scholar 

  • Acharya, S.P., Mukherjee, A., Janaki, M.S.: Adv. Space Res. 69, 4045–4057 (2022)

    ADS  Google Scholar 

  • Berger, R.L., Arrighi, W., Chapman, T., Dimits, A., Banks, J.W., Brunner, S.: Phys. Plasmas 30, 042715 (2023)

    ADS  CAS  Google Scholar 

  • Baumjohann, W., Treumann, R.A.: Basic Space Plasma Physics p. 7. World Scientific, Singapore (1997)

    Google Scholar 

  • Chatterjee, M., Dasgupta, M., Das, S., Halder, M., Chandra, S.: Afr. Rev. Phys. 15, 75 (2021)

    Google Scholar 

  • Chandra, S., Das, C., Sarkar, J.: Z. Naturforsch. A 76, 329–347 (2021)

    ADS  CAS  Google Scholar 

  • El-Labany, S.K., El-Taibany, W.F., Behery, E.E., Fouda, S.M.: Phys. Plasmas 25, 013701 (2019)

    ADS  Google Scholar 

  • Elkamash, I.S.: Phys. Plasmas 27, 022112 (2020)

    ADS  CAS  Google Scholar 

  • El-Shamy, E.F., Selim, M.M., El-Depsy, A., Abdellahi, M.O., Al-Hagan, O., Al-Mogeeth, A., Alelyani, L.: Contrib. Plasma Phys. 60, e202000044 (2020)

    ADS  CAS  Google Scholar 

  • Fedorov, E., Mazur, N., Pilipenko, V., Baddeley, L.: J. Geophys. Res. 121, 282 (2016)

    Google Scholar 

  • Fayad, A.A., Elkamash, I.S., Fichtner, H., Lazar, M., El-Labany, S.K., Moslem, W.M.: Phys. Plasmas 28, 082902 (2021)

    ADS  CAS  Google Scholar 

  • Gao, D.N., Zhang, H., Zhang, J., Li, Z.Z., Duan, W.S.: Eur. Phys. J. D 70, 235 (2016)

    ADS  Google Scholar 

  • Ghosh, M., Sharry, D.D., Chandra, S.: Afr. Rev. Phys. 15, 63 (2021)

    Google Scholar 

  • Hussain, S., Mahmood, S.: Phys. Plasmas 18, 123701 (2011a)

    ADS  Google Scholar 

  • Hussain, S., Mahmood, S., Aman-ur-Rehman: Phys. Plasmas 21, 112901 (2015)

    ADS  Google Scholar 

  • Hussain, S., Hasnain, H.: Phys. Plasmas 24, 032106 (2017)

    ADS  Google Scholar 

  • Haas, F., Mahmood, S.: Phys. Rev. E 97, 063206 (2018)

    ADS  CAS  PubMed  Google Scholar 

  • Harvey, P., Durniak, C., Samsonov, D., Morfill, G.: Phys. Rev. E 81, 057401 (2020)

    ADS  Google Scholar 

  • Hussain, S., Ur-Rehman, H., Mahmood, S.: IEEE Trans. Plasma Sci. 49, 1776 (2021)

    ADS  Google Scholar 

  • Jahangir, R., Masood, W.: Phys. Plasmas 27, 042105 (2020)

    ADS  CAS  Google Scholar 

  • Jahangir, R., Masood, W., Siddiq, M., Batool, N., Saleem, K.: Phys. Plasmas 22, 092312 (2015)

    ADS  Google Scholar 

  • Kumar, A., Sen, A.: New J. Phys. 22, 073057 (2020)

    ADS  Google Scholar 

  • Kumar, K., Mishra, M.K.: Phys. Plasmas 29, 092101 (2021)

    ADS  Google Scholar 

  • Khan, M., Haris, M., Kamran, M., Mirza, A.M.: Phys. Plasmas 29, 122104 (2022)

    ADS  CAS  Google Scholar 

  • Liu, X., Chen, L., Yang, L., Xia, Z., Malaspina, D.M.: J. Geophys. Res. 123, 587 (2018)

    Google Scholar 

  • Mushtaq, A., Shah, H.A.: Phys. Plasmas 12, 012301 (2005)

    ADS  Google Scholar 

  • Matthaeus, W.H., Dasso, S., Weygand, J.M., Milano, L.J., Smith, C.W., Kivelson, M.G.: Phys. Rev. Lett. 95, 231101 (2005)

    ADS  CAS  PubMed  Google Scholar 

  • Masood, W., Mushtaq, A.: Phys. Plasmas 372, 4283 (2008)

    CAS  Google Scholar 

  • Mushtaq, A., Qamar, A.: Phys. Plasmas 16, 022301 (2009)

    ADS  Google Scholar 

  • Masood, W., Jehan, N., Mirza, A.: Phys. Plasmas 17, 032314 (2010)

    ADS  Google Scholar 

  • Manesh, M., Sijo, S., Anu, V., Sreekala, G., Neethu, T.W., Savithri, D.E., Venugopal, C.: Phys. Plasmas 24, 062905 (2017)

    ADS  Google Scholar 

  • Mahloul, S.L., Oudini, N., Bendib, A.: Phys. Plasmas 25, 043505 (2018)

    ADS  Google Scholar 

  • Martines-Bedenko, V., Pilipenko, V., Fedorov, E., Nahayo, E., Yizengaw, E.: Cosm. Res. 58, 1 (2020)

    ADS  Google Scholar 

  • Maiti, A., Chowdhury, S., Singha, P., Ray, S., Dasgupta, R., Chandra, S.: Afr. Rev. Phys. 15, 97 (2021)

    Google Scholar 

  • Nakariakov, V., Pilipenko, V., Heilig, B., Jelĺnek, P., Karlickỳ, M., Klimushkin, D., Kolotkov, D., Lee, D.H., Nisticò, G., Doorsselaere, T.V., et al.: Space Sci. Rev. 200, 75 (2016)

    ADS  Google Scholar 

  • Omidi, N., Collinson, G., Sibeck, D.: J. Geophys. Res. 122, 10275 (2017)

    Google Scholar 

  • Parveen, S., Mahmood, S., Qamar, A., Adnan, M.: Adv. Space Res. 62, 1192–1203 (2019)

    ADS  Google Scholar 

  • Panasenko, S.V., Otsuka, Y., van de Kamp, M., Chernogor, L.F., Shinbori, A., Tsugawa, T., Nishioka, M.: J. Atmos. Sol.-Terr. Phys. 191, 105051 (2019)

    Google Scholar 

  • Roy, K., Maji, T.K., Ghorui, M.K., Chatterjee, P., Roychoudhury, R.: Astrophys. Space Sci. 352, 151–157 (2014)

    ADS  Google Scholar 

  • Roy, K., Swapan, K., Chatterjee, P.: Pramana 86, 873–883 (2016)

    ADS  Google Scholar 

  • Rufai, O.R., Bharuthram, R., Maharaj, S.K.: Phys. Plasmas 28, 052901 (2021)

    ADS  CAS  Google Scholar 

  • Surkov, V., Hayakawa, M., Schekotov, A.Y., Fedorov, E., Molchanov, O.: J. Geophys. Res. 111, A01303 (2006)

    ADS  Google Scholar 

  • Saha, A., Chatterjee, P.: Astrophys. Space Sci. 353, 169–177 (2014)

    ADS  Google Scholar 

  • Steffy, S.V., Ghosh, S.S.: Phys. Plasmas 24, 102111 (2017)

    ADS  Google Scholar 

  • Shan, S.A., Haque, Q.: Phys. Plasmas 27, 022105 (2020)

    ADS  CAS  Google Scholar 

  • Shustov, P.I., Artemyev, A.V., Volokitin, A.S., Vasko, I.Y., Zhang, X.J., Petrukovich, A.A.: Phys. Plasmas 29, 012902 (2022)

    ADS  CAS  Google Scholar 

  • Singla, S., Chandra, S., Saini, N.S.: Chin. J. Phys. 85, 524–533 (2023)

    Google Scholar 

  • Ur-Rehman, H., Mahmood, S., Kaladze, T.: Phys. Plasmas 26, 092108 (2019)

    ADS  Google Scholar 

  • Verheest, F., Hellberg, M.A.: Phys. Plasmas 27, 102306 (2020)

    ADS  CAS  Google Scholar 

  • Vineeth, S., Prabhakar, S., Sebastian, S., Abraham, N.P.: Phys. Plasmas 28, 033701 (2021)

    ADS  Google Scholar 

  • Wagner, C.U.: Pure Appl. Geophys. 54, 105 (1963)

    Google Scholar 

  • Wahlund, J.E., Eriksson, A.I., Holback, B., Boehm, M.H., Bonnell, J., Kintner, P.M., Seyler, C.E., Clemmons, J.H., Eliasson, L., Knudsen, D.J., Norqvist, P.: J. Geophys. Res. Space Phys. 103, 4343 (1998)

    ADS  Google Scholar 

  • Wang, Y.L., Zhou, Z.X., Jiang, X.Q., Zhang, H.F., Jiang, Y.Y., Hou, C.F., Sun, X.D., Qin, R.H.: Phys. Lett. A 355, 386 (2006)

    ADS  MathSciNet  CAS  Google Scholar 

  • Zhang, G.J., Xiao, H.Y., Wang, Y.L.: Phys. Plasmas 30, 012905 (2023)

    ADS  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Grant No. 12064023), Natural Science Foundation of Gansu Province (Grant No. 20JR5RA209).

Author information

Authors and Affiliations

Authors

Contributions

Dong-Ning Gao wrote the main manuscript text, Heng Zhang sought data and prepared figures 1-7 and Zhong-Zheng Li prepared figures 8-13. All authors reviewed the manuscript.

Corresponding author

Correspondence to Dong-Ning Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} a={}&3+3k^{2}+6\mu _{e}+3k^{2}\mu _{e}+6s\chi \mu _{e}+3sk^{2}\chi \mu _{e} \\ &{}+3 \mu _{e}^{2}+6s\chi \mu _{e}^{2}+3s^{2}\chi ^{2}\mu _{e}^{2}+6s^{2} \chi \mu _{h} \\ &{}+3k^{2}s^{2}\chi \mu _{h} +6s^{2}\chi \mu _{e}\mu _{h}+6s^{3}\chi ^{2}\mu _{e}\mu _{h} \\ &{}+3s^{4} \chi ^{2}\mu _{h}^{2}. \end{aligned}$$
(A.1)
$$\begin{aligned} b={}&3k^{2}\mu _{e}+3k^{2}\beta \mu _{e}+3k^{4}\beta \mu _{e}+5k^{2} \beta \theta \mu _{e} \\ &{}+5k^{4}\beta \theta \mu _{e}+3s k^{2}\chi \mu _{e}+5s k^{2}\chi \beta \theta \mu _{e} \\ &{}+5sk^{4} \beta \theta \chi \mu _{e} +3k^{2} \mu _{e}^{2} +3k^{2}\beta \mu _{e}^{2}+5k^{2} \beta \theta \mu _{e}^{2} \\ &{}+3s k^{2} \beta \chi \mu _{e}^{2}+10s k^{2}\beta \theta \chi \mu _{e}^{2}+3s^{2} \chi ^{2}\mu _{e}^{2} \\ &{}+5k^{2}s^{2}\beta \theta \chi ^{2}\mu _{e}^{2}+3k^{2}s^{2} \chi \mu _{h}+5k^{2}s^{2}\beta \theta \chi \mu _{h} \\ &{}+5k^{4}s^{2}\beta \theta \chi \mu _{h}+6s^{2} \chi \mu _{e}\mu _{h} +6k^{2}s^{2} \beta \chi \mu _{e}\mu _{h} \\ &{}+3k^{4}s^{2}\beta \chi \mu _{e}\mu _{h} +10 k^{2}s^{2}\beta \theta \chi \mu _{e}\mu _{h}+6s^{3}\chi ^{2}\mu _{e} \mu _{h} \\ &{}+10k^{2}s^{3}\beta \theta \chi ^{2} \mu _{e}\mu _{h}+6s^{2} \chi \mu _{e}^{2}\mu _{h} +3k^{2}s^{2}\chi \mu _{e}^{2}\mu _{h} \\ &{}+3k^{2}s^{2} \beta \chi \mu _{e}^{2}\mu _{h}+3k^{2}s^{3}\beta \chi ^{2}\mu _{e}^{2} \mu _{h}+3s^{2}\mu _{h}^{2} \\ &{}+3s^{2}k^{2}\mu _{h}^{2}+6 s^{3}\chi \mu _{h}^{2}+3 s^{4}\chi ^{2}\mu _{h}^{2}+5k^{2}s^{4}\beta \theta \chi ^{2}\mu _{h}^{2} \\ &{}+ 6s^{2}\mu _{e}\mu _{h}^{2}+3k^{2}s^{2}\mu _{e} \mu _{h}^{2}+6s^{3} \chi \mu _{e} \mu _{h}^{2} \\ &{}+3k^{2}s^{3}\chi \mu _{e} \mu _{h}^{2}+3k^{2}s^{4} \beta \chi ^{2} \mu _{e}\mu _{h}^{2}+3s^{2}\mu _{e}^{2}\mu _{h}^{2}. \end{aligned}$$
(A.2)
$$\begin{aligned} c={}&3k^{4}s^{2}\beta \chi \mu _{e} \mu _{h}+5k^{4}s^{2}\beta ^{2} \theta \chi \mu _{e} \mu _{h} +5k^{6}s^{2}\beta ^{2}\theta \chi \mu _{e} \mu _{h} \\ &{}+3k^{2}s^{2}\chi \mu _{e}^{2}\mu _{h}+3k^{2}s^{2}\beta \chi \mu _{e}^{2}\mu _{h}+5k^{2}s^{2}\beta \theta \chi \mu _{e}^{2}\mu _{h} \\ &{}+5k^{4}s^{2}\beta \theta \chi \mu _{e}^{2}\mu _{h}+5k^{4}s^{2}\beta ^{2} \theta \chi \mu _{e}^{2}\mu _{h} \\ &{}+3k^{2}s^{3}\beta \chi ^{2} \mu _{e}^{2} \mu _{h}+5k^{4}s^{3}\beta ^{2}\theta \chi ^{2} \mu _{e}^{2}\mu _{h} \\ &{}+3k^{2}s^{2} \mu _{e}\mu _{h}^{2}+3k^{2}s^{2}\beta \mu _{e}\mu _{h}^{2} +3k^{4}s^{2}\beta \mu _{e}\mu _{h}^{2} \\ &{}+5k^{2}s^{2}\beta \theta \mu _{e} \mu _{h}^{2}+5k^{4}s^{2}\beta \theta \mu _{e}\mu _{h}^{2}+3k^{2}s^{3} \chi \mu _{e}\mu _{h}^{2} \\ &{}+6k^{2}s^{3}\beta \chi \mu _{e}\mu _{h}^{2}+5k^{2}s^{3} \beta \theta \chi \mu _{e}\mu _{h}^{2} \\ &{}+5k^{4}s^{3}\beta \theta \chi \mu _{e}\mu _{h}^{2}+3k^{2}s^{4}\beta \chi ^{2} \mu _{e}\mu _{h}^{2} \\ &{}+5k^{4}s^{2} \beta \theta \chi ^{2} \mu _{e}\mu _{h}^{2}+3k^{2}s^{2}\mu _{e}^{2} \mu _{h}^{2}+3k^{2}s^{2}\beta \mu _{e}^{2}\mu _{h}^{2} \\ &{}+5k^{2}s^{2} \beta \theta \mu _{e}^{2}\mu _{h}^{2}+3k^{2}s^{3}\beta \chi \mu _{e}^{2} \mu _{h}^{2}. \end{aligned}$$
(A.3)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, DN., Zhang, H. & Li, ZZ. Collision properties of overtaking magnetosonic solitary waves in the ionospheric multi-ion plasmas. Astrophys Space Sci 369, 20 (2024). https://doi.org/10.1007/s10509-024-04278-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-024-04278-7

Keywords

Navigation