Skip to main content

Advertisement

Log in

Apoptosis and pyroptosis in the nasal mucosa of Syrian hamster during SARS-CoV-2 infection and reinfection

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

In SARS-CoV-2 infection, it has been observed that viral replication lasts longer in the nasal mucosa than in the lungs, despite the presence of a high viral load at both sites. In hamsters, we found that the nasal mucosa exhibited a mild inflammatory response and minimal pathological injuries, whereas the lungs displayed a significant inflammatory response and severe injuries. The underlying cellular events may be induced by viral infection in three types of cell death: apoptosis, pyroptosis, and necroptosis. Our findings indicate that apoptosis was consistently activated during infection in the nasal mucosa, and the levels of apoptosis were consistent with the viral load. On the other hand, pyroptosis and a few instances of necroptosis were observed only on 7 dpi in the nasal mucosa. In the lungs, however, both pyroptosis and apoptosis were prominently activated on 3 dpi, with lower levels of apoptosis compared to the nasal mucosa. Interestingly, in reinfection, obvious viral load and apoptosis in the nasal mucosa were detected on 3 dpi, while no other forms of cell death were detected. We noted that the inflammatory reactions and pathological injuries in the nasal mucosa were milder, indicating that apoptosis may play a role in promoting lower inflammatory reactions and milder pathological injuries and contribute to the generation of long-term viral replication in the nasal mucosa. Our study provides valuable insights into the differences in cellular mechanisms during SARS-CoV-2 infection and highlights the potential significance of apoptosis regulation in the respiratory mucosa for controlling viral replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All the data generated or analyzed during this study are included in this published article, and the additional files are available from the corresponding author upon reasonable request.

References

  1. Ahn JH et al (2021) Nasal ciliated cells are primary targets for SARS-CoV-2 replication in the early stage of COVID-19. J Clin Invest 131(13):e148517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li H et al (2022) Nasal mucosa exploited by SARS-CoV-2 for replicating and shedding during reinfection. Viruses 14(8):1608

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  3. Li X et al (2022) Cell deaths: involvement in the pathogenesis and intervention therapy of COVID-19. Signal Transduct Target Ther 7(1):186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ye Q et al (2021) SARS-CoV-2 infection in the mouse olfactory system. Cell Discov 7(1):49

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu G et al (2021) SARS-CoV-2 promotes RIPK1 activation to facilitate viral propagation. Cell Res 31(12):1230–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Paul O et al (2021) Vascular inflammation in lungs of patients with fatal coronavirus disease 2019 (COVID-19): possible role for the NLRP3 inflammasome. Res Sq. https://doi.org/10.21203/rs.3.rs-842167/v1

    Article  PubMed  PubMed Central  Google Scholar 

  7. Koepke L et al (2021) Manipulation of autophagy by SARS-CoV-2 proteins. Autophagy 17(9):2659–2661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Karki R et al (2021) Synergism of TNF-alpha and IFN-gamma triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell 184(1):149–168

    Article  CAS  PubMed  Google Scholar 

  9. Ketelut-Carneiro N, Fitzgerald KA (2022) Apoptosis, pyroptosis, and necroptosis-oh my! the many ways a cell can die. J Mol Biol 434(4):167378

    Article  CAS  PubMed  Google Scholar 

  10. Henson PM, Hume DA (2006) Apoptotic cell removal in development and tissue homeostasis. Trends Immunol 27(5):244–250

    Article  CAS  PubMed  Google Scholar 

  11. Juncadella IJ et al (2013) Apoptotic cell clearance by bronchial epithelial cells critically influences airway inflammation. Nature 493(7433):547–551

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Ravichandran KS (2010) Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J Exp Med 207(9):1807–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Poon IK et al (2014) Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol 14(3):166–180

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bertheloot D, Latz E, Franklin BS (2021) Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol 18(5):1106–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Samir P, Malireddi RKS, Kanneganti TD (2020) The PANoptosome: a deadly protein complex driving pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol 10:238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li S, Guan Z, Li H, Ye M, Chen X, Shen J, Zhou Y, Shi ZL, Zhou P, Peng K (2020) SARS-CoV-2 triggers inflammatory responses and cell death through caspase-8 activation. Signal Transduct Target Ther 5(1):235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma J et al (2021) SARS-CoV-2 nucleocapsid suppresses host pyroptosis by blocking Gasdermin D cleavage. EMBO J 40(18):e108249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang R et al (2021) SARS-CoV-2 accessory protein ORF7b mediates tumor necrosis factor-alpha-induced apoptosis in cells. Front Microbiol 12:654709

    Article  PubMed  PubMed Central  Google Scholar 

  19. Van Opdenbosch N, Lamkanfi M (2019) Caspases in cell death, inflammation, and disease. Immunity 50(6):1352–1364

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shi J et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526(7575):660–665

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Kim NE, Kim DK, Song YJ (2021) SARS-CoV-2 nonstructural proteins 1 and 13 suppress caspase-1 and the NLRP3 inflammasome activation. Microorganisms 9(3):494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Murphy JM et al (2013) The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39(3):443–453

    Article  CAS  PubMed  Google Scholar 

  23. Rodriguez DA et al (2016) Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis. Cell Death Differ 23(1):76–88

    Article  CAS  PubMed  Google Scholar 

  24. Aiello A et al (2018) The involvement of plasmacytoid cells in HIV infection and pathogenesis. Cytokine Growth Factor Rev 40:77–89

    Article  CAS  PubMed  Google Scholar 

  25. Hou YJ et al (2020) SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182(2):429–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li H et al (2024) The abundant distribution and duplication of SARS-CoV-2 in the cerebrum and lungs promote a high mortality rate in transgenic hACE2-C57 mice. Int J Mol Sci 25(2):997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chan PKS et al (2020) Serologic responses in healthy adult with SARS-CoV-2 reinfection, Hong Kong, August 2020. Emerg Infect Dis 26(12):3076–3078

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sia SF et al (2020) Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583(7818):834–838

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zandi M et al (2021) Clinical symptoms and types of samples are critical factors for the molecular diagnosis of symptomatic COVID-19 patients: a systematic literature review. Int J Microbiol 2021:5528786

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ferreira AC et al (2021) SARS-CoV-2 engages inflammasome and pyroptosis in human primary monocytes. Cell Death Discov 7(1):43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Swanson KV, Deng M, Ting JP (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19(8):477–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Deng J et al (2023) SARS-CoV-2 NSP7 inhibits type I and III IFN production by targeting the RIG-I/MDA5, TRIF, and STING signaling pathways. J Med Virol 95(3):e28561

    Article  CAS  PubMed  Google Scholar 

  33. Sui C et al (2022) SARS-CoV-2 NSP13 inhibits type I IFN production by degradation of TBK1 via p62-dependent selective autophagy. J Immunol 208(3):753–761

    Article  CAS  PubMed  Google Scholar 

  34. Zandi M (2022) ORF9c and ORF10 as accessory proteins of SARS-CoV-2 in immune evasion. Nat Rev Immunol 22(5):331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li X et al (2022) SARS-CoV-2 ORF10 suppresses the antiviral innate immune response by degrading MAVS through mitophagy. Cell Mol Immunol 19(1):67–78

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Kunming National High-level Biosafety Primate Research Center for its support.

Funding

This research was funded by CAMS Innovation Fund for Medical Sciences (2022-I2M-CoV19-007), the Yunnan Applied Basic Research Projects (202301AS070066, 202201AT070239), the Yunnan Provincial Science and Technology Department (202102AA310043), and the Technology talent and platform plan of Yunnan Provincial Science and Technology Department (202305AD160006, 2022SCP010).

Author information

Authors and Affiliations

Authors

Contributions

LD.L promote and host the studies. LD.L and H.L designed the studies, analyzed the data and wrote the manuscript. H.L and X.Z prepared and analyzed the data in the manuscript. H.L, X.Z, XL.Z and HW.Z performed the experiments. YB.W and J.L performed the Western blot, JH.H performed the statistical analysis, JL.Y and HT.L participated in Histopathology experiments. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Longding Liu.

Ethics declarations

Conflict of interest

We declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7139 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhao, X., Zhang, X. et al. Apoptosis and pyroptosis in the nasal mucosa of Syrian hamster during SARS-CoV-2 infection and reinfection. Apoptosis (2024). https://doi.org/10.1007/s10495-024-01940-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10495-024-01940-x

Keywords

Navigation