Skip to main content

Advertisement

Log in

Overview of genetic and epigenetic regulation of human papillomavirus and apoptosis in cervical cancer

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

A Correction to this article was published on 09 February 2023

This article has been updated

Abstract

Cervical cancer is the fourth most common cancer affecting women worldwide after breast, colorectal and lung cancers. Owing to a lack of awareness and resources, low- and middle-income countries bear most of the burden of cervical cancer. In developed countries, the incidence rate has been halved over the past three decades due to robust screening and implementation of vaccine programs. HPV is not the sole cause of cervical cancer but acts as a principal factor in the pathogenesis of cervical cancer. By integrating into the host genome, its oncogenic proteins (E6 and E7) alter and interfere with the standard signal transduction machinery of the host. Apoptosis is a key pathway affected by aberrant genetic mutations, polymorphisms and epigenetic mechanisms during cervical carcinogenesis. Along with DNA methylation and histone modifications, non-coding RNAs have also been implicated as epigenetic modulators in various malignancies and are being explored for reversing disease severity. This review emphasizes various genetic and epigenetic approaches regulating apoptotic pathways and HPV E6 and E7 genes that can be targeted to overcome the challenges in cervical cancer treatment. In addition, it also discusses the apoptosis targeting novel drug molecules in cervical cancer which are currently undergoing clinical and pre-clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not Applicable.

Change history

Abbreviations

CC:

Cervical cancer

HPV:

Human papillomavirus

HR-HPV:

High risk human papillomavirus

LR-HPV:

Low risk human papillomavirus

CIN:

Cervical intraepithelial neoplasia

OC:

Oral contraceptive

STI:

Sexually transmitted infection

LCR:

Long control region

IRF:

Interferon regulatory factor

TSG:

Tumor suppressor gene

RAD51:

RAD51 recombinase

ETS2:

ETS proto-oncogene 2

TP63:

Tumor protein 63

KLF5:

Kruppel like factor 5

DR:

Death receptor

TNF:

Tumor necrosis factor

TRAIL:

TNF related apoptosis inducing ligand

FAS:

Fas cell surface death receptor

FADD:

FAS-associated death domain

DISC:

Death inducing signaling complex

CASPASE:

cysteine-aspartic proteases

RB:

retinoblastoma

MDM2:

Mouse double minute 2 homolog

STAT:

Signal transducer and activator of transcription

lncRNAs:

Long non-coding RNAs

mi-RNAs:

microRNAs

DAPK:

Death associated protein kinase

PEG3:

paternally-expressed gene 3

RASSF1:

Ras-associated domain family member 1

Bak:

Bcl-2 homologous antagonist

Bax:

Bcl-2 associated X

MEG3:

Maternally expressed 3

PKCSD:

Phosphoinositide 3- kinase catalytic subunit delta

PRKCD:

Protein kinase C delta polypeptide chain

MALAT1:

Metastasis associated lung adenocarcinoma transcript 1

HOTAIR:

HOX transcript antisense RNA

FIGO:

The International Federation of Gynaecology and Obstetrics

PTMs:

Post-translational modifications

HATs:

Histone acetyl transferases

HDACs:

Histone deacetyltransferases

References

  1. Crosbie EJ, Einstein MH, Franceschi S, Kitchener HC (2013) Human papillomavirus and cervical cancer. Lancet. Sep 7;382(9895):889 – 99. doi: 10.1016/S0140-6736(13)60022-7. Epub 2013 Apr 23. PMID: 23618600

  2. Balasubramaniam SD, Balakrishnan V, Oon CE, Kaur G (2019) Key molecular events in Cervical Cancer Development. Medicina (Kaunas). 17:384. https://doi.org/10.3390/medicina55070384. PMID: 31319555; PMCID: PMC6681523.H 7

  3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) May;71(3):209–249 Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. doi: 10.3322/caac.21660. Epub 2021 Feb 4. PMID: 33538338

  4. Cohen PA, Jhingran A, Oaknin A, Denny L, Cervical cancer (2019) Lancet. Jan 12;393(10167):169–182. doi: https://doi.org/10.1016/S0140-6736(18)32470-X. PMID: 30638582

  5. International Collaboration of Epidemiological Studies of Cervical Cancer. Comparison of risk factors for invasive squamous cell carcinoma and adenocarcinoma of the cervix: collaborative reanalysis of individual data on 8,097 women with squamous cell carcinoma and 1,374 women with adenocarcinoma from 12 epidemiological studies. Int J Cancer. 2007 Feb 15;120(4):885 – 91. doi: 10.1002/ijc.22357. Erratum in: Int J Cancer (2007) Jun 1;120(11):2525. Berrington de González, Amy [removed]; Green, Jane [removed]. PMID: 17131323

  6. Dueñas-González A, Lizano M, Candelaria M, Cetina L, Arce C, Cervera E Epigenetics of cervical cancer. An overview and therapeutic perspectives.Mol Cancer. 2005 Oct25;4:38. doi: https://doi.org/10.1186/1476-4598-4-38. PMID: 16248899; PMCID: PMC1291396.

  7. Baker TS, Newcomb WW, Olson NH, Cowsert LM, Olson C, Brown JC (1991 Dec) Structures of bovine and human papillomaviruses. Analysis by cryoelectron microscopy and three-dimensional image reconstruction. Biophys J 60(6):1445–1456. doi: https://doi.org/10.1016/S0006-3495(91)82181-6PMID: 1663794; PMCID: PMC1260204

  8. Okunade KS (2020) Jul;40(5):602–608 Human papillomavirus and cervical cancer. J Obstet Gynaecol. doi: 10.1080/01443615.2019.1634030. Epub 2019 Sep 10. Erratum in: J Obstet Gynaecol. 2020 May;40(4):590. PMID: 31500479; PMCID: PMC7062568

  9. Bzhalava D, Eklund C, Dillner J (2015 Feb) International standardization and classification of human papillomavirus types. Virology 476:341–344. doi: https://doi.org/10.1016/j.virol.2014.12.028Epub 2015 Jan 9. PMID: 25577151

  10. Nyitray AG, Iannacone MR (2014) The epidemiology of human papillomaviruses. Curr Probl Dermatol. ;45:75–91. doi: 10.1159/000358370. Epub 2014 Mar 13. PMID: 24643179

  11. Rosales R, Rosales C (2014) Immune therapy for human papillomaviruses-related cancers. World J Clin Oncol. Dec 10;5(5):1002-19. doi: https://doi.org/10.5306/wjco.v5.i5.1002. PMID: 25493236; PMCID: PMC4259927

  12. Remschmidt C, Kaufmann AM, Hagemann I, Vartazarova E, Wichmann O, Deleré Y (2013) Mar;23(3):519 – 26 Risk factors for cervical human papillomavirus infection and high-grade intraepithelial lesion in women aged 20 to 31 years in Germany. Int J Gynecol Cancer. doi: https://doi.org/10.1097/IGC.0b013e318285a4b2. PMID: 23360813

  13. Clements AE, Raker CA, Cooper AS, Boardman LA (2011 Feb) Prevalence and patient characteristics associated with CIN 3 in adolescents. Am J Obstet Gynecol 204(2):128e. 1-7Epub 2010 Dec 8. PMID: 21145032

  14. International Collaboration of Epidemiological Studies of Cervical Cancer, Appleby P, Beral V, Berrington de González A, Colin D, Franceschi S, Goodhill A, Green J, Peto J, Plummer M, Sweetland S (2007) Cervical cancer and hormonal contraceptives: collaborative reanalysis of individual data for 16,573 women with cervical cancer and 35,509 women without cervical cancer from 24 epidemiological studies. Lancet (London England) 370(9599):1609–1621. https://doi.org/10.1016/S0140-6736(07)61684-5

    Article  CAS  Google Scholar 

  15. Asthana S, Busa V, Labani S (2020 Apr) Oral contraceptives use and risk of cervical cancer-A systematic review & meta-analysis. Eur J Obstet Gynecol Reprod Biol 247:163–175. doi: https://doi.org/10.1016/j.ejogrb.2020.02.014Epub 2020 Feb 21. PMID: 32114321

  16. Fang J, Zhang H, Jin S (2014 Jun) Epigenetics and cervical cancer: from pathogenesis to therapy. Tumour Biol 35(6):5083–5093. doi: https://doi.org/10.1007/s13277-014-1737-zEpub 2014 Feb 20. PMID: 24554414

  17. Oyervides-Muñoz MA, Pérez-Maya AA, Rodríguez-Gutiérrez HF, Gómez-Macias GS, Fajardo-Ramírez OR, Treviño V, Barrera-Saldaña HA, Garza-Rodríguez ML (2018 Jul) Understanding the HPV integration and its progression to cervical cancer. Infect Genet Evol 61:134–144 Epub 2018 Mar 6. PMID: 29518579

  18. Taghizadeh E, Jahangiri S, Rostami D, Taheri F, Renani PG, Taghizadeh H, Gheibi Hayat SM (2019) Roles of E6 and E7 Human Papillomavirus Proteins in Molecular Pathogenesis of Cervical Cancer. Curr Protein Pept Sci. ;20(9):926–934. doi: https://doi.org/10.2174/1389203720666190618101441. PMID: 31244421

  19. Akagi K, Li J, Broutian TR, Padilla-Nash H, Xiao W, Jiang B, Rocco JW, Teknos TN, Kumar B, Wangsa D, He D, Ried T, Symer DE, Gillison ML Genome-wide analysis of HPV integration in human cancers reveals recurrent, focal genomic instability.Genome Res. 2014Feb; 24(2):185–99. doi: https://doi.org/10.1101/gr.164806.113. Epub 2013 Nov 7. PMID: 24201445; PMCID: PMC3912410.

  20. Hu Z, Zhu D, Wang W, Li W, Jia W, Zeng X, Ding W, Yu L, Wang X, Wang L, Shen H, Zhang C, Liu H, Liu X, Zhao Y, Fang X, Li S, Chen W, Tang T, Fu A, Wang Z, Chen G, Gao Q, Li S, Xi L, Wang C, Liao S, Ma X, Wu P, Li K, Wang S, Zhou J, Wang J, Xu X, Wang H, Ma D (2015 Feb) Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism. Nat Genet 47(2):158–163. doi: https://doi.org/10.1038/ng.3178Epub 2015 Jan 12. PMID: 25581428

  21. Parfenov M, Pedamallu CS, Gehlenborg N, Freeman SS, Danilova L, Bristow CA, Lee S, Hadjipanayis AG, Ivanova EV, Wilkerson MD, Protopopov A, Yang L, Seth S, Song X, Tang J, Ren X, Zhang J, Pantazi A, Santoso N, Xu AW, Mahadeshwar H, Wheeler DA, Haddad RI, Jung J, Ojesina AI, Issaeva N, Yarbrough WG, Hayes DN, Grandis JR, El-Naggar AK, Meyerson M, Park PJ, Chin L, Seidman JG, Hammerman PS, Kucherlapati R (2014 Oct) Cancer Genome Atlas Network. Characterization of HPV and host genome interactions in primary head and neck cancers. Proc Natl Acad Sci U S A 28(43):15544–15549. doi: https://doi.org/10.1073/pnas.1416074111Epub 2014 Oct 13. PMID: 25313082; PMCID: PMC4217452

  22. Ojesina AI, Lichtenstein L, Freeman SS, Pedamallu CS, Imaz-Rosshandler I, Pugh TJ, Cherniack AD, Ambrogio L, Cibulskis K, Bertelsen B, Romero-Cordoba S, Treviño V, Vazquez-Santillan K, Guadarrama AS, Wright AA, Rosenberg MW, Duke F, Kaplan B, Wang R, Nickerson E, Walline HM, Lawrence MS, Stewart C, Carter SL, McKenna A, Rodriguez-Sanchez IP, Espinosa-Castilla M, Woie K, Bjorge L, Wik E, Halle MK, Hoivik EA, Krakstad C, Gabiño NB, Gómez-Macías GS, Valdez-Chapa LD, Garza-Rodríguez ML, Maytorena G, Vazquez J, Rodea C, Cravioto A, Cortes ML, Greulich H, Crum CP, Neuberg DS, Hidalgo-Miranda A, Escareno CR, Akslen LA, Carey TE, Vintermyr OK, Gabriel SB, Barrera-Saldaña HA, Melendez-Zajgla J, Getz G, Salvesen HB, Meyerson M Landscape of genomic alterations in cervical carcinomas. Nature. 2014 Feb 20;506(7488):371-5. doi: https://doi.org/10.1038/nature12881. Epub 2013 Dec 25. PMID: 24390348; PMCID: PMC4161954

  23. Rusan M, Li YY, Hammerman PS (2015) Genomic landscape of human papillomavirus-associated cancers. Clin Cancer Res. May 1;21(9):2009-19. doi: https://doi.org/10.1158/1078-0432.CCR-14-1101. Epub 2015 Mar 16. PMID: 25779941; PMCID: PMC4417456

  24. Petca A, Borislavschi A, Zvanca ME, Petca RC, Sandru F, Dumitrascu MC (2020 Dec) Non-sexual HPV transmission and role of vaccination for a better future (review). Exp Ther Med 20(6):186. doi: https://doi.org/10.3892/etm.2020.9316Epub 2020 Oct 13. PMID: 33101476; PMCID: PMC7579832

  25. Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell. Nov 11;147(4):742 – 58. doi: https://doi.org/10.1016/j.cell.2011.10.033. Erratum in: Cell. 2011 Dec 23;147(7):1640. PMID: 22078876; PMCID: PMC4511103

  26. Jacobson MD, Weil M, Raff MC Programmed cell death in animal development. Cell. 1997 Feb 7;88(3):347 – 54. doi: https://doi.org/10.1016/s0092-8674(00)81873-5. PMID: 9039261

  27. Elmore S (2007 Jun) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516 PMID: 17562483; PMCID: PMC2117903

  28. Yuan S, Akey CW (2013) Apoptosome structure, assembly, and procaspase activation. Structure. Apr 2;21(4):501 – 15. doi: https://doi.org/10.1016/j.str.2013.02.024. PMID: 23561633; PMCID: PMC3644875

  29. D’Arcy MS (2019 Jun) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43(6):582–592. doi: https://doi.org/10.1002/cbin.11137Epub 2019 Apr 25. PMID: 30958602

  30. Mercau ME, Patwa S, Bhat KPL, Ghosh S, Rothlin CV (2022) Sep;44(5):725–738 Cell death in development, maintenance, and diseases of the nervous system. Semin Immunopathol. doi: https://doi.org/10.1007/s00281-022-00938-4. Epub 2022 May 4. PMID: 35508671

  31. Pu X, Storr SJ, Zhang Y, Rakha EA, Green AR, Ellis IO, Martin SG Caspase-3 and caspase-8 expression in breast cancer: caspase-3 is associated with survival.Apoptosis. 2017Mar; 22(3):357–368. doi: 10.1007/s10495-016-1323-5. PMID: 27798717; PMCID: PMC5306438.

  32. Talseth-Palmer BA, Scott RJ (2011 Sep) Genetic variation and its role in malignancy. Int J Biomed Sci 7(3):158–171 PMID: 23675233; PMCID: PMC3614837

  33. Yan D, Yi S, Chiu WC, Qin LG, Kin WH, Kwok Hung CT, Linxiao H, Wai CK, Yi S, Tao Y, Tao T Integrated analysis of chromosome copy number variation and gene expression in cervical carcinoma.Oncotarget. 2017 Nov11;8(65):108912–108922. doi: https://doi.org/10.18632/oncotarget.22403. PMID: 29312578; PMCID: PMC5752491.

  34. Singh R, Letai A, Sarosiek K (2019 Mar) Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 20(3):175–193. doi: https://doi.org/10.1038/s41580-018-0089-8PMID: 30655609; PMCID: PMC7325303

  35. Storey A, Thomas M, Kalita A, Harwood C, Gardiol D, Mantovani F, Breuer J, Leigh IM, Matlashewski G, Banks L Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. Nature. 1998 May 21;393(6682):229 – 34. doi: https://doi.org/10.1038/30400. PMID: 9607760

  36. Garima PS, Pandey LK, Saxena AK, Patel N (2016 Oct) The role of p53 gene in cervical carcinogenesis. J Obstet Gynaecol India 66(Suppl 1):383–388. doi: https://doi.org/10.1007/s13224-015-0754-1Epub 2015 Sep 4. PMID: 27651634; PMCID: PMC5016398

  37. Koyamatsu Y, Yokoyama M, Nakao Y, Fukuda K, Saito T, Matsukuma K, Iwasaka T (2003) Sep;90(3):547 – 51 A comparative analysis of human papillomavirus types 16 and 18 and expression of p53 gene and Ki-67 in cervical, vaginal, and vulvar carcinomas. Gynecol Oncol. doi: https://doi.org/10.1016/s0090-8258(03)00401-3. PMID: 13678722

  38. Orth JD, Loewer A, Lahav G, Mitchison TJ (2012 Feb) Prolonged mitotic arrest triggers partial activation of apoptosis, resulting in DNA damage and p53 induction. Mol Biol Cell 23(4):567–576. doi: https://doi.org/10.1091/mbc.E11-09-0781Epub 2011 Dec 14. PMID: 22171325; PMCID: PMC3279386

  39. Sriraman A, Dickmanns A, Najafova Z, Johnsen SA, Dobbelstein M CDK4 inhibition diminishes p53 activation by MDM2 antagonists. Cell Death Dis. 2018 Sep 11;9(9):918. doi: https://doi.org/10.1038/s41419-018-0968-0. PMID: 30206211; PMCID: PMC6133967

  40. Anifowose A, Agbowuro AA, Tripathi R, Lu W, Tan C, Yang X, Wang B (2020 Jul) Inducing apoptosis through Upregulation of p53: structure-activity exploration of anthraquinone analogs. Med Chem Res 29(7):1199–1210. doi: https://doi.org/10.1007/s00044-020-02563-yEpub 2020 Jun 7. PMID: 32719577; PMCID: PMC7384666

  41. Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC, Bargonetti J, Bartel F, Taubert H, Wuerl P, Onel K, Yip L, Hwang SJ, Strong LC, Lozano G, Levine AJ A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell. 2004 Nov 24;119(5):591–602. doi: https://doi.org/10.1016/j.cell.2004.11.022. PMID: 15550242

  42. Dong C, Li Q, Lyu SC, Krensky AM, Clayberger C (2005) A novel apoptosis pathway activated by the carboxyl terminus of p21. Blood. Feb 1;105(3):1187-94. doi: https://doi.org/10.1182/blood-2004-06-2188. Epub 2004 Oct 5. PMID: 15466931

  43. Tian Q, Lu W, Chen H, Ye F, Xie X (2009) Aug;19(6):1011-4 The nonsynonymous single-nucleotide polymorphisms in codon 31 of p21 gene and the susceptibility to cervical cancer in Chinese women. Int J Gynecol Cancer. doi: https://doi.org/10.1111/IGC.0b013e3181a8b950. PMID: 19820361

  44. Sergeeva SP, Savin AA, Litvitskiy PF (2016) Rol’ sistemy Fas v patogeneze ishemicheskogo insul’ta [A role of the Fas system in the pathogenesis of ischemic stroke]. Zh Nevrol Psikhiatr Im S S Korsakova. ;116(3 Pt 2):3–8. Russian. doi: https://doi.org/10.17116/jnevro2016116323-8. PMID: 27296794

  45. Edathara PM, Gorre M, Kagita S, Vuree S, Cingeetham A, Nanchari SR, Meka PB, Annamaneni S, Digumarthi RR, Satti V (2016 Apr) Association of promoter polymorphisms of Fas -FasL genes with development of chronic myeloid leukemia. Tumour Biol 37(4):5475–5484. doi: https://doi.org/10.1007/s13277-015-4295-0Epub 2015 Nov 13. PMID: 26563376

  46. Arakaki R, Yamada A, Kudo Y, Hayashi Y, Ishimaru N (2014) Mechanism of activation-induced cell death of T cells and regulation of FasL expression. Crit Rev Immunol. ;34(4):301 – 14. doi: https://doi.org/10.1615/critrevimmunol.2014009988. PMID: 24941158

  47. Wu J, Metz C, Xu X, Abe R, Gibson AW, Edberg JC, Cooke J, Xie F, Cooper GS, Kimberly RP (2003) A novel polymorphic CAAT/enhancer-binding protein beta element in the FasL gene promoter alters Fas ligand expression: a candidate background gene in African American systemic lupus erythematosus patients. J Immunol. Jan 1;170(1):132-8. doi: https://doi.org/10.4049/jimmunol.170.1.132. PMID: 12496392

  48. Wong RS (2011 Sep) Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 26(1):87. doi: https://doi.org/10.1186/1756-9966-30-87PMID: 21943236; PMCID: PMC3197541

  49. Carneiro BA, El-Deiry WS (2020 Jul) Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol 17(7):395–417. doi: https://doi.org/10.1038/s41571-020-0341-yEpub 2020 Mar 23. PMID: 32203277; PMCID: PMC8211386

  50. Cai J, Ye Q, Luo S, Zhuang Z, He K, Zhuo ZJ, Wan X, Cheng J CASP8 -652 6 N insertion/deletion polymorphism and overall cancer risk: evidence from 49 studies. Oncotarget. 2017 May 25;8(34):56780–56790. doi: https://doi.org/10.18632/oncotarget.18187. PMID: 28915630; PMCID: PMC5593601

  51. Chatterjee K, Williamson AL, Hoffman M, Dandara C CASP8 promoter polymorphism is associated with high-risk HPV types and abnormal cytology but not with cervical cancer. J Med Virol. 2011 Apr;83(4):630-6. doi: https://doi.org/10.1002/jmv.22009. PMID: 21328377

  52. Kouzarides T (2007) Chromatin modifications and their function. Cell. Feb 23;128(4):693–705. doi: https://doi.org/10.1016/j.cell.2007.02.005. PMID: 17320507

  53. Auclair G, Weber M (2012) Nov;94(11):2202-11 Mechanisms of DNA methylation and demethylation in mammals. Biochimie. doi: https://doi.org/10.1016/j.biochi.2012.05.016. Epub 2012 May 23. PMID: 22634371

  54. Hermann A, Goyal R, Jeltsch A The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem. 2004 Nov 12;279(46):48350-9. doi: https://doi.org/10.1074/jbc.M403427200. Epub 2004 Aug 31. PMID: 15339928

  55. Witte T, Plass C, Gerhauser C (2014) Pan-cancer patterns of DNA methylation. Genome Med. Aug 30;6(8):66. doi: https://doi.org/10.1186/s13073-014-0066-6. PMID: 25473433; PMCID: PMC4254427

  56. Jabbari K, Bernardi G (2004) Cytosine methylation and CpG, TpG (CpA) and TpA frequencies. Gene. May 26;333:143-9. doi: https://doi.org/10.1016/j.gene.2004.02.043. PMID: 15177689

  57. Chen YC, Gotea V, Margolin G, Elnitski L Significant associations between driver gene mutations and DNA methylation alterations across many cancer types. PLoS Comput Biol. 2017 Nov 10;13(11):e1005840. doi: https://doi.org/10.1371/journal.pcbi.1005840. PMID: 29125844; PMCID: PMC5709060

  58. Mazumder Indra D, Singh RK, Mitra S, Dutta S, Chakraborty C, Basu PS, Mondal RK, Roychoudhury S, Panda CK (2011 Dec) Genetic and epigenetic changes of HPV16 in cervical cancer differentially regulate E6/E7 expression and associate with disease progression. Gynecol Oncol 123(3):597–604 Epub 2011 Sep 10. PMID: 21911249

  59. Tang S, Tao M, McCoy JP Jr, Zheng ZM (2006) May;80(9):4249-63 The E7 oncoprotein is translated from spliced E6*I transcripts in high-risk human papillomavirus type 16- or type 18-positive cervical cancer cell lines via translation reinitiation. J Virol. doi: https://doi.org/10.1128/JVI.80.9.4249-4263.2006. PMID: 16611884; PMCID: PMC1472016

  60. Xi LF, Jiang M, Shen Z, Hulbert A, Zhou XH, Lin YY, Kiviat NB, Koutsky LA (2011) Inverse association between methylation of human papillomavirus type 16 DNA and risk of cervical intraepithelial neoplasia grades 2 or 3. PLoS ONE 6(8):e23897. doi: https://doi.org/10.1371/journal.pone.0023897Epub 2011 Aug 24. PMID: 21887341; PMCID: PMC3161083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Turan T, Kalantari M, Calleja-Macias IE, Cubie HA, Cuschieri K, Villa LL, Skomedal H, Barrera-Saldaña HA, Bernard HU (2006) Methylation of the human papillomavirus-18 L1 gene: a biomarker of neoplastic progression? Virology. May 25;349(1):175 – 83. doi: 10.1016/j.virol.2005.12.033. Epub 2006 Feb 10. PMID: 16472835

  62. Michie AM, McCaig AM, Nakagawa R, Vukovic M (2010 Jan) Death-associated protein kinase (DAPK) and signal transduction: regulation in cancer. FEBS J 277(1):74–80. doi: https://doi.org/10.1111/j.1742-4658.2009.07414.xEpub 2009 Oct 30. PMID: 19878310

  63. Kim JH, Choi YD, Lee JS, Lee JH, Nam JH, Choi C (2010) Jan;116(1):99–104 Assessment of DNA methylation for the detection of cervical neoplasia in liquid-based cytology specimens. Gynecol Oncol. doi: 10.1016/j.ygyno.2009.09.032. PMID: 19836067

  64. Chaopatchayakul P, Jearanaikoon P, Yuenyao P, Limpaiboon T (2010) Mar;202(3):281.e1-9 Aberrant DNA methylation of apoptotic signaling genes in patients responsive and nonresponsive to therapy for cervical carcinoma. Am J Obstet Gynecol. doi: 10.1016/j.ajog.2009.11.037. Epub 2010 Feb 1. PMID: 20117760

  65. Ozören N, El-Deiry WS (2003) Apr;13(2):135 – 47 Cell surface Death Receptor signaling in normal and cancer cells. Semin Cancer Biol. doi: https://doi.org/10.1016/s1044-579x(02)00131-1. PMID: 12654257

  66. Nye MD, Hoyo C, Huang Z, Vidal AC, Wang F, Overcash F, Smith JS, Vasquez B, Hernandez B, Swai B, Oneko O, Mlay P, Obure J, Gammon MD, Bartlett JA, Murphy SK (2013) Associations between methylation of paternally expressed gene 3 (PEG3), cervical intraepithelial neoplasia and invasive cervical cancer. PLoS ONE 8(2):e56325. doi: https://doi.org/10.1371/journal.pone.0056325Epub 2013 Feb 13. PMID: 23418553; PMCID: PMC3571954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yin F, Wang N, Wang S, Yu F, Sun X, Yu X, Luo B, Zhao C, Wang Y HPV16 oncogenes E6 or/and E7 may influence the methylation status of RASSFIA gene promoter region in cervical cancer cell line HT-3.Oncol Rep. 2017Apr; 37(4):2324–2334. doi: https://doi.org/10.3892/or.2017.5465. Epub 2017 Feb 17. PMID: 28260046.

  68. Cohen Y, Singer G, Lavie O, Dong SM, Beller U, Sidransky D The RASSF1A tumor suppressor gene is commonly inactivated in adenocarcinoma of the uterine cervix. Clin Cancer Res. 2003 Aug 1;9(8):2981-4. PMID: 12912945

  69. Yang HJ (2013 Jan) Aberrant DNA methylation in cervical carcinogenesis. Chin J Cancer 32(1):42–48. doi: https://doi.org/10.5732/cjc.012.10033Epub 2012 Aug 28. PMID: 22943599; PMCID: PMC3845585

  70. Lev Maor G, Yearim A, Ast G (2015 May) The alternative role of DNA methylation in splicing regulation. Trends Genet 31(5):274–280. doi: https://doi.org/10.1016/j.tig.2015.03.002Epub 2015 Mar 30. PMID: 25837375

  71. Kalantari M, Chase DM, Tewari KS, Bernard HU (2010) Feb;82(2):311 – 20 Recombination of human papillomavirus-16 and host DNA in exfoliated cervical cells: a pilot study of L1 gene methylation and chromosomal integration as biomarkers of carcinogenic progression. J Med Virol. doi: https://doi.org/10.1002/jmv.21676. PMID: 20029805

  72. Richard Boland C (2017) May;62(5):1107–1109 Non-coding RNA: It’s Not Junk. Dig Dis Sci. doi: https://doi.org/10.1007/s10620-017-4506-1. Erratum in: Dig Dis Sci. 2017 Sep 6;: PMID: 28271304; PMCID: PMC5433430

  73. Weber B, Stresemann C, Brueckner B, Lyko F (2007) Methylation of human microRNA genes in normal and neoplastic cells. Cell Cycle. May 2;6(9):1001-5. doi: https://doi.org/10.4161/cc.6.9.4209. Epub 2007 May 27. PMID: 17457051

  74. Friedman RC, Farh KK, Burge CB, Bartel DP (2009 Jan) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105. doi: https://doi.org/10.1101/gr.082701.108Epub 2008 Oct 27. PMID: 18955434; PMCID: PMC2612969

  75. Pedroza-Torres A, López-Urrutia E, García-Castillo V, Jacobo-Herrera N, Herrera LA, Peralta-Zaragoza O, López-Camarillo C, De Leon DC, Fernández-Retana J, Cerna-Cortés JF, Pérez-Plasencia C MicroRNAs in cervical cancer: evidences for a miRNA profile deregulated by HPV and its impact on radio-resistance. Molecules. 2014 May 16;19(5):6263-81. doi: https://doi.org/10.3390/molecules19056263. PMID: 24840898; PMCID: PMC6271743

  76. Wang F, Liu M, Li X, Tang H (2013) MiR-214 reduces cell survival and enhances cisplatin-induced cytotoxicity via down-regulation of Bcl2l2 in cervical cancer cells. FEBS Lett. Mar 1;587(5):488 – 95. doi: 10.1016/j.febslet.2013.01.016. Epub 2013 Jan 18. PMID: 23337879

  77. Liu S, Zhang P, Chen Z, Liu M, Li X, Tang H (2013) MicroRNA-7 downregulates XIAP expression to suppress cell growth and promote apoptosis in cervical cancer cells. FEBS Lett. Jul 11;587(14):2247-53. doi: https://doi.org/10.1016/j.febslet.2013.05.054. Epub 2013 Jun 4. PMID: 23742934

  78. Yuan W, Xiaoyun H, Haifeng Q, Jing L, Weixu H, Ruofan D, Jinjin Y, Zongji S MicroRNA-218 enhances the radiosensitivity of human cervical cancer via promoting radiation induced apoptosis. Int J Med Sci. 2014 May 6;11(7):691-6. doi: https://doi.org/10.7150/ijms.8880. PMID: 24843318; PMCID: PMC4025168

  79. Chen XF, Liu Y (2016) Jul;81:379–387 MicroRNA-744 inhibited cervical cancer growth and progression through apoptosis induction by regulating Bcl-2. Biomed Pharmacother. doi: https://doi.org/10.1016/j.biopha.2016.04.023. Epub 2016 Apr 26. PMID: 27261616

  80. Mou Z, Xu X, Dong M, Xu J MicroRNA-148b Acts as a tumor suppressor in Cervical Cancer by inducing G1/S-Phase cell cycle arrest and apoptosis in a caspase-3-Dependent manner.Med Sci Monit. 2016 Aug9;22:2809–15. doi: https://doi.org/10.12659/msm.896862. PMID: 27505047; PMCID: PMC4982527.

  81. Cui F, Li X, Zhu X, Huang L, Huang Y, Mao C, Yan Q, Zhu J, Zhao W, Shi H (2012) MiR-125b inhibits tumor growth and promotes apoptosis of cervical cancer cells by targeting phosphoinositide 3-kinase catalytic subunit delta. Cell Physiol Biochem 30(5):1310–1318. doi: https://doi.org/10.1159/000343320Epub 2012 Oct 22. PMID: 23160634

    Article  CAS  PubMed  Google Scholar 

  82. Ke G, Liang L, Yang JM, Huang X, Han D, Huang S, Zhao Y, Zha R, He X, Wu X MiR-181a confers resistance of cervical cancer to radiation therapy through targeting the pro-apoptotic PRKCD gene.Oncogene. 2013 Jun20;32(25):3019–27. doi: https://doi.org/10.1038/onc.2012.323. Epub 2012 Jul 30. PMID: 22847611.

  83. Johnsson P, Lipovich L, Grandér D, Morris KV (2014 Mar) Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta 1840(3):1063–1071. doi: https://doi.org/10.1016/j.bbagen.2013.10.035Epub 2013 Oct 27. PMID: 24184936; PMCID: PMC3909678

  84. Dong J, Su M, Chang W, Zhang K, Wu S, Xu T (2017 Oct) Long non-coding RNAs on the stage of cervical cancer (review). Oncol Rep 38(4):1923–1931. doi: https://doi.org/10.3892/or.2017.5905Epub 2017 Aug 14. PMID: 28849103

  85. Huang L, Liao LM, Liu AW, Wu JB, Cheng XL, Lin JX, Zheng M (2014 Oct) Overexpression of long noncoding RNA HOTAIR predicts a poor prognosis in patients with cervical cancer. Arch Gynecol Obstet 290(4):717–723. doi: https://doi.org/10.1007/s00404-014-3236-2Epub 2014 Apr 20. PMID: 24748337

  86. Zhang M, Song Y, Zhai F ARFHPV E7 oncogene, lncRNA HOTAIR, miR-331-3p and its target, NRP2, form a negative feedback loop to regulate the apoptosis in the tumorigenesis in HPV positive cervical cancer.J Cell Biochem. 2018 Jun; 119(6):4397–4407. doi: https://doi.org/10.1002/jcb.26503. Epub 2018 Mar 7. PMID: 29130509.

  87. Jiang Y, Li Y, Fang S, Jiang B, Qin C, Xie P, Zhou G, Li G (2014 Jun) The role of MALAT1 correlates with HPV in cervical cancer. Oncol Lett 7(6):2135–2141 Epub 2014 Mar 24. PMID: 24932303; PMCID: PMC4049771

  88. Qu X, Li Y, Wang L, Yuan N, Ma M, Chen Y LncRNA SNHG8 accelerates proliferation and inhibits apoptosis in HPV-induced cervical cancer through recruiting EZH2 to epigenetically silence RECK expression.J Cell Biochem. 2020Oct; 121(10):4120–4129. doi: 10.1002/jcb.29646. Epub 2020 Jan 21. PMID: 31961005.

  89. Wu L, Jin L, Zhang W, Zhang L (2016 Mar) Roles of long non-coding RNA CCAT2 in Cervical Cancer Cell Growth and apoptosis. Med Sci Monit 17:22:875–879. doi: https://doi.org/10.12659/msm.897754PMID: 26983975; PMCID: PMC4801156

  90. Fan MJ, Zou YH, He PJ, Zhang S, Sun XM, Li CZ Long non-coding RNA SPRY4-IT1promotes epithelial-mesenchymal transition of cervical cancer by regulating the miR-101-3p/ZEB1 axis.Biosci Rep. 2019 Jun4;39(6):BSR20181339. doi: https://doi.org/10.1042/BSR20181339. PMID: 31092700; PMCID: PMC6549091.

  91. Zhang J, Yao T, Wang Y, Yu J, Liu Y, Lin Z (2016) Long noncoding RNA MEG3 is downregulated in cervical cancer and affects cell proliferation and apoptosis by regulating miR-21. Cancer Biol Ther 17(1):104–113 PMID: 26574780; PMCID: PMC4847830

    Article  PubMed  Google Scholar 

  92. Liao LM, Sun XY, Liu AW, Wu JB, Cheng XL, Lin JX, Zheng M, Huang L (2014) Jun;133(3):616 – 23 Low expression of long noncoding XLOC_010588 indicates a poor prognosis and promotes proliferation through upregulation of c-Myc in cervical cancer. Gynecol Oncol. doi: 10.1016/j.ygyno.2014.03.555. Epub 2014 Mar 22. PMID: 24667250

  93. Wang C, Zou H, Chen A, Yang H, Yu X, Yu X, Wang Y C-Myc-activated long non-coding RNA PVT1 enhances the proliferation of cervical cancer cells by sponging miR-486-3p. J Biochem. 2020 Jun 1;167(6):565–575. doi: https://doi.org/10.1093/jb/mvaa005. PMID: 31943014

  94. Zhang Y, Wu D, Wang D (2020 Mar) Long non-coding RNA ARAP1-AS1 promotes tumorigenesis and metastasis through facilitating proto-oncogene c-Myc translation via dissociating PSF/PTB dimer in cervical cancer. Cancer Med 9(5):1855–1866. doi: https://doi.org/10.1002/cam4.2860Epub 2020 Jan 17. PMID: 31953923; PMCID: PMC7050100

  95. Zhao T, Liu B, Zhang M, Li S, Zhao C, Cheng L Assessment of alterations in histone modification function and guidance for death risk prediction in cervical cancer patients.Front Genet. 2022 Sep19;13:1013571. doi: https://doi.org/10.3389/fgene.2022.1013571. PMID: 36199574; PMCID: PMC9527294.

  96. Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol. Apr 1;6(4):a018713. doi: https://doi.org/10.1101/cshperspect.a018713. PMID: 24691964; PMCID: PMC3970420

  97. Thomas Y, Androphy EJ Human Papillomavirus Replication Regulation by Acetylation of a Conserved Lysine in the E2 Protein. J Virol. 2018 Jan 17;92(3):e01912-17. doi: https://doi.org/10.1128/JVI.01912-17. PMID: 29142126; PMCID: PMC5774875

  98. Velez-Perez A, Wang XI, Li M, Zhang S SIRT1 overexpression in cervical squamous intraepithelial lesions and invasive squamous cell carcinoma.Hum Pathol. 2017 Jan; 59:102–107. doi: https://doi.org/10.1016/j.humpath.2016.09.019. Epub 2016 Oct 6. PMID: 27720890.

  99. Min JS, Kim JC, Kim JA, Kang I, Ahn JK (2018 Sep) SIRT2 reduces actin polymerization and cell migration through deacetylation and degradation of HSP90. Biochim Biophys Acta Mol Cell Res 1865(9):1230–1238. doi: https://doi.org/10.1016/j.bbamcr.2018.06.005Epub 2018 Jun 14. PMID: 29908203

  100. Liu J, Zhu M, Xia X, Huang Y, Zhang Q, Wang X Jumonji domain-containing protein 1A promotes cell growth and progression via transactivation of c-Myc expression and predicts a poor prognosis in cervical cancer.Oncotarget. 2016 Dec20;7(51):85151–85162. doi: https://doi.org/10.18632/oncotarget.13208. PMID: 27835890; PMCID: PMC5356725.

  101. Verma M (2015) The Role of Epigenomics in the Study of Cancer Biomarkers and in the Development of Diagnostic Tools. Adv Exp Med Biol. ;867:59–80. doi: https://doi.org/10.1007/978-94-017-7215-0_5. PMID: 26530360

  102. Lourenço de Freitas N, Deberaldini MG, Gomes D, Pavan AR, Sousa Â, Dos Santos JL, Soares CP Histone deacetylase inhibitors as therapeutic interventions on Cervical Cancer Induced by Human Papillomavirus.Front Cell Dev Biol. 2021 Jan28;8:592868. doi: https://doi.org/10.3389/fcell.2020.592868. PMID: 33634093; PMCID: PMC7901962.

  103. Chen J, Ghazawi FM, Bakkar W, Li Q Valproic acid and butyrate induce apoptosis in human cancer cells through inhibition of gene expression of Akt/protein kinase B.Mol Cancer. 2006 Dec11;5:71. doi: https://doi.org/10.1186/1476-4598-5-71. PMID: 17156483; PMCID: PMC1762018.

  104. Jiang Y, Wang Y, Su Z, Yang L, Guo W, Liu W, Zuo J (2010) Jul-Aug;3(4):613-9 Synergistic induction of apoptosis in HeLa cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitor SAHA. Mol Med Rep. doi: https://doi.org/10.3892/mmr_00000305. PMID: 21472287

  105. Khongsti S, Shunyu BN, Ghosh S (2019 Dec) Promoter-associated DNA methylation & expression profiling of genes (FLT 3, EPB41L3 & SFN) in patients with oral squamous cell carcinoma in the Khasi & Jaintia population of Meghalaya, India. Indian J Med Res 150(6):584–591. doi: https://doi.org/10.4103/ijmr.IJMR_620_18PMID: 32048621; PMCID: PMC7038811

  106. Chen YC, Huang RL, Huang YK, Liao YP, Su PH, Wang HC, Chang CC, Lin YW, Yu MH, Chu TY, Lai HC Methylomics analysis identifies epigenetically silenced genes and implies an activation of β-catenin signaling in cervical cancer. Int J Cancer. 2014 Jul 1;135(1):117 – 27. doi: https://doi.org/10.1002/ijc.28658. Epub 2013 Dec 17. PMID: 24310984

  107. Narayan G, Xie D, Ishdorj G, Scotto L, Mansukhani M, Pothuri B, Wright JD, Kaufmann AM, Schneider A, Arias-Pulido H, Murty VV (2016 Feb) Epigenetic inactivation of TRAIL decoy receptors at 8p12-21.3 commonly deleted region confers sensitivity to Apo2L/trail-Cisplatin combination therapy in cervical cancer. Genes Chromosomes Cancer 55(2):177–189. doi: https://doi.org/10.1002/gcc.22325Epub 2015 Nov 6. PMID: 26542757

  108. Siegel EM, Riggs BM, Delmas AL, Koch A, Hakam A, Brown KD Quantitative DNA methylation analysis of candidate genes in cervical cancer. PLoS One. 2015 Mar 31;10(3):e0122495. doi: https://doi.org/10.1371/journal.pone.0122495. PMID: 25826459; PMCID: PMC4380427

  109. Iden M, Fye S, Li K, Chowdhury T, Ramchandran R, Rader JS The lncRNA PVT1 Contributes to the Cervical Cancer Phenotype and Associates with Poor Patient Prognosis. PLoS One. 2016 May 27;11(5):e0156274. doi: https://doi.org/10.1371/journal.pone.0156274. PMID: 27232880; PMCID: PMC4883781

  110. Shen F, Zheng H, Zhou L, Li W, Xu X (2019 Jul) Overexpression of MALAT1 contributes to cervical cancer progression by acting as a sponge of miR-429. J Cell Physiol 234(7):11219–11226. doi: https://doi.org/10.1002/jcp.27772Epub 2018 Dec 4. PMID: 30515786

  111. Zhou Y, Wang Y, Lin M, Wu D, Zhao M LncRNA HOTAIR promotes proliferation and inhibits apoptosis by sponging miR-214-3p in HPV16 positive cervical cancer cells. Cancer Cell Int. 2021 Jul 28;21(1):400. doi: https://doi.org/10.1186/s12935-021-02103-7. PMID: 34320988; PMCID: PMC8317292

  112. Zhang J, Gao Y CCAT-1 promotes proliferation and inhibits apoptosis of cervical cancer cells via the wnt signaling pathway.Oncotarget. 2017 Jul10;8(40):68059–68070. doi: https://doi.org/10.18632/oncotarget.19155. PMID: 28978096; PMCID: PMC5620236.

  113. Wang X, Wang Z, Wang J, Wang Y, Liu L, Xu X LncRNA MEG3 has anti-activity effects of cervical cancer.Biomed Pharmacother. 2017 Oct; 94:636–643. doi: https://doi.org/10.1016/j.biopha.2017.07.056. Epub 2017 Aug 5. PMID: 28787698.

  114. Kang S, Kim JW, Kang GH, Lee S, Park NH, Song YS, Park SY, Kang SB, Lee HP (2006) Comparison of DNA hypermethylation patterns in different types of uterine cancer: cervical squamous cell carcinoma, cervical adenocarcinoma and endometrial adenocarcinoma. Int J Cancer. May 1;118(9):2168-71. doi: https://doi.org/10.1002/ijc.21609. PMID: 16331610

  115. Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, Liu H, Yin Y, QuercetinInflammation and Immunity. Nutrients. 2016 Mar15;8(3):167. doi: https://doi.org/10.3390/nu8030167. PMID: 26999194; PMCID: PMC4808895.

  116. Zambrano P, Segura-Pacheco B, Perez-Cardenas E, Cetina L, Revilla-Vazquez A, Taja-Chayeb L, Chavez-Blanco A, Angeles E, Cabrera G, Sandoval K, Trejo-Becerril C, Chanona-Vilchis J, Duenas-González A A phase I study of hydralazine to demethylate and reactivate the expression of tumor suppressor genes.BMC Cancer. 2005 Apr29;5:44. doi: https://doi.org/10.1186/1471-2407-5-44. PMID: 15862127; PMCID: PMC1131894.

  117. You JS, Kang JK, Lee EK, Lee JC, Lee SH, Jeon YJ, Koh DH, Ahn SH, Seo DW, Lee HY, Cho EJ, Han JW Histone deacetylase inhibitor apicidin downregulates DNA methyltransferase 1 expression and induces repressive histone modifications via recruitment of corepressor complex to promoter region in human cervix cancer cells. Oncogene. 2008 Feb 28;27(10):1376-86. doi: https://doi.org/10.1038/sj.onc.1210776. Epub 2007 Sep 10. PMID: 17828306

  118. Jafari A, Rezaei-Tavirani M, Farhadihosseinabadi B, Taranejoo S, Zali H (2020 May) HSP90 and co-chaperones: impact on Tumor Progression and prospects for molecular-targeted Cancer Therapy. Cancer Invest 38(5):310–328 Epub 2020 Apr 27. PMID: 32274949

  119. Roller C, Maddalo D The Molecular Chaperone GRP78/BiP in the development of Chemoresistance: mechanism and possible treatment.Front Pharmacol. 2013 Feb11;4:10. doi: https://doi.org/10.3389/fphar.2013.00010. PMID: 23403503; PMCID: PMC3568707.

  120. Varilla V, Atienza J, Dasanu CA (2013) Sep;13(9):1241-56 Immune alterations and immunotherapy prospects in head and neck cancer. Expert Opin Biol Ther. doi: https://doi.org/10.1517/14712598.2013.810716. Epub 2013 Jun 24. PMID: 23789839

  121. Sun K, Salmon S, Yajjala VK, Bauer C, Metzger DW (2014) Expression of suppressor of cytokine signaling 1 (SOCS1) impairs viral clearance and exacerbates lung injury during influenza infection. PLoS Pathog. Dec 11;10(12):e1004560. doi: https://doi.org/10.1371/journal.ppat.1004560. PMID: 25500584; PMCID: PMC4263766

  122. Mandal R, Şenbabaoğlu Y, Desrichard A, Havel JJ, Dalin MG, Riaz N, Lee KW, Ganly I, Hakimi AA, Chan TA, Morris LG The head and neck cancer immune landscape and its immunotherapeutic implications.JCI Insight. 2016 Oct20;1(17):e89829. doi: https://doi.org/10.1172/jci.insight.89829. PMID: 27777979; PMCID: PMC5070962.

  123. Bagarazzi ML, Yan J, Morrow MP, Shen X, Parker RL, Lee JC, Giffear M, Pankhong P, Khan AS, Broderick KE, Knott C, Lin F, Boyer JD, Draghia-Akli R, White CJ, Kim JJ, Weiner DB, Sardesai NY (2012) Immunotherapy against HPV16/18 generates potent TH1 and cytotoxic cellular immune responses. Sci Transl Med. Oct 10;4(155):155ra138. doi: https://doi.org/10.1126/scitranslmed.3004414. PMID: 23052295; PMCID: PMC4317299

  124. Trimble CL, Morrow MP, Kraynyak KA, Shen X, Dallas M, Yan J, Edwards L, Parker RL, Denny L, Giffear M, Brown AS, Marcozzi-Pierce K, Shah D, Slager AM, Sylvester AJ, Khan A, Broderick KE, Juba RJ, Herring TA, Boyer J, Lee J, Sardesai NY, Weiner DB, Bagarazzi ML Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet. 2015 Nov 21;386(10008):2078–2088. doi: 10.1016/S0140-6736(15)00239-1. Epub 2015 Sep 17. PMID: 26386540; PMCID: PMC4888059

  125. Draper LM, Kwong ML, Gros A, Stevanović S, Tran E, Kerkar S, Raffeld M, Rosenberg SA, Hinrichs CS Targeting of HPV-16 + Epithelial Cancer Cells by TCR Gene Engineered T Cells Directed against E6. Clin Cancer Res. 2015 Oct 1;21(19):4431-9. doi: https://doi.org/10.1158/1078-0432.CCR-14-3341. PMID: 26429982; PMCID: PMC4603283

  126. Jin BY, Campbell TE, Draper LM, Stevanović S, Weissbrich B, Yu Z, Restifo NP, Rosenberg SA, Trimble CL, Hinrichs CS Engineered T cells targeting E7 mediate regression of human papillomavirus cancers in a murine model.JCI Insight. 2018 Apr19;3(8):e99488. doi: https://doi.org/10.1172/jci.insight.99488. PMID: 29669936; PMCID: PMC5931134.

  127. Pal A, Kundu R, Human Papillomavirus E, and E7 : The Cervical Cancer HallmarksTargets for Therapy. Front Microbiol. 2020 Jan 21;10:3116. doi: https://doi.org/10.3389/fmicb.2019.03116. PMID: 32038557; PMCID: PMC6985034

  128. Duenas-Gonzalez A, Gonzalez-Fierro A (2019 Aug) Pharmacodynamics of current and emerging treatments for cervical cancer. Expert Opin Drug Metab Toxicol 15(8):671–682 Epub 2019 Jul 31. PMID: 31340683

  129. Zhang D, Zhou XH, Zhang J, Zhou YX, Ying J, Wu GQ, Qian JH Propofol promotes cell apoptosis via inhibiting HOTAIR mediated mTOR pathway in cervical cancer. Biochem Biophys Res Commun. 2015 Dec 25;468(4):561-7. doi: https://doi.org/10.1016/j.bbrc.2015.10.129. Epub 2015 Oct 31. PMID: 26523512

  130. Li H, Lu Y, Pang Y, Li M, Cheng X, Chen J (2017 Feb) Propofol enhances the cisplatin-induced apoptosis on cervical cancer cells via EGFR/JAK2/STAT3 pathway. Biomed Pharmacother 86:324–333. doi: https://doi.org/10.1016/j.biopha.2016.12.036Epub 2016 Dec 21. PMID: 28011380

  131. Wang L, Liu Y, Zhou Y, Wang J, Tu L, Sun Z, Wang X, Luo F Zoledronic acid inhibits the growth of cancer stem cell derived from cervical cancer cell by attenuating their stemness phenotype and inducing apoptosis and cell cycle arrest through the Erk1/2 and Akt pathways. J Exp Clin Cancer Res. 2019 Feb 21;38(1):93. doi: https://doi.org/10.1186/s13046-019-1109-z. PMID: 30791957; PMCID: PMC6385443

  132. Poole RM (2014) Oct;74(16):1973–1981 Pembrolizumab: first global approval. Drugs. doi: https://doi.org/10.1007/s40265-014-0314-5. PMID: 25331768

  133. Mayadev J, Nunes AT, Li M, Marcovitz M, Lanasa MC, Monk BJ CALLA: efficacy and safety of concurrent and adjuvant durvalumab with chemoradiotherapy versus chemoradiotherapy alone in women with locally advanced cervical cancer: a phase III, randomized, double-blind, multicenter study.Int J Gynecol Cancer. 2020Jul; 30(7):1065–1070. doi: https://doi.org/10.1136/ijgc-2019-001135. Epub 2020 May 23. PMID: 32447296; PMCID: PMC7398223.

  134. Bose CK (2022) Balstilimab and other immunotherapy for recurrent and metastatic cervical cancer. Med Oncol. Jan 29;39(4):47. doi: https://doi.org/10.1007/s12032-022-01646-7. PMID: 35092506

  135. Friedman CF, Snyder Charen A, Zhou Q, Carducci MA, Buckley De Meritens A, Corr BR, Fu S, Hollmann TJ, Iasonos A, Konner JA, Konstantinopoulos PA, Modesitt SC, Sharon E, Aghajanian C, Zamarin D (2020 Oct) Phase II study of atezolizumab in combination with bevacizumab in patients with advanced cervical cancer. J Immunother Cancer 8(2):e001126. doi: https://doi.org/10.1136/jitc-2020-001126PMID: 33004542; PMCID: PMC7534695

  136. Santin AD, Deng W, Frumovitz M, Buza N, Bellone S, Huh W, Khleif S, Lankes HA, Ratner ES, O’Cearbhaill RE, Jazaeri AA, Birrer M (2020 Apr) Phase II evaluation of nivolumab in the treatment of persistent or recurrent cervical cancer (NCT02257528/NRG-GY002). Gynecol Oncol 157(1):161–166 Epub 2020 Jan 7. PMID: 31924334; PMCID: PMC7127981

  137. Tewari KS, Monk BJ, Vergote I, Miller A, de Melo AC, Kim HS, Kim YM, Lisyanskaya A, Samouëlian V, Lorusso D, Damian F, Chang CL, Gotovkin EA, Takahashi S, Ramone D, Pikiel J, Maćkowiak-Matejczyk B, Guerra Alía EM, Colombo N, Makarova Y, Rischin D, Lheureux S, Hasegawa K, Fujiwara K, Li J, Jamil S, Jankovic V, Chen CI, Seebach F, Weinreich DM, Yancopoulos GD, Lowy I, Mathias M, Fury MG, Oaknin A (2022) ; Investigators for GOG Protocol 3016 and ENGOT Protocol En-Cx9. Survival with Cemiplimab in Recurrent Cervical Cancer. N Engl J Med. Feb 10;386(6):544–555. doi: https://doi.org/10.1056/NEJMoa2112187. PMID: 35139273

  138. Chopra S, Goda JS, Mittal P, Mulani J, Pant S, Pai V, Kannan S, Deodhar K, Krishnamurthy MN, Menon S, Charnalia M, Shah S, Rangarajan V, Gota V, Naidu L, Sawant S, Thakkar P, Popat P, Ghosh J, Rath S, Gulia S, Engineer R, Mahantshetty U, Gupta S Concurrent chemoradiation and brachytherapy alone or in combination with nelfinavir in locally advanced cervical cancer (NELCER): study protocol for a phase III trial. BMJ Open. 2022 Apr 6;12(4):e055765. doi: https://doi.org/10.1136/bmjopen-2021-055765. PMID: 35387819; PMCID: PMC8987785

  139. Wu XX, Kakehi Y Enhancement of lexatumumab-induced apoptosis in human solid cancer cells by Cisplatin in caspase-dependent manner. Clin Cancer Res. 2009 Mar 15;15(6):2039-47. doi: https://doi.org/10.1158/1078-0432.CCR-08-2667. Epub 2009 Mar 10. PMID: 19276256

  140. Su K, Wang CF, Zhang Y, Cai YJ, Zhang YY, Zhao Q The inhibitory effects of carnosic acid on cervical cancer cells growth by promoting apoptosis via ROS-regulated signaling pathway.Biomed Pharmacother. 2016Aug; 82:180–91. doi: https://doi.org/10.1016/j.biopha.2016.04.056. Epub 2016 May 10. PMID: 27470354.

  141. Shao J, Wang C, Li L, Liang H, Dai J, Ling X, Tang H Luteoloside Inhibits Proliferation and Promotes Intrinsic and Extrinsic Pathway-Mediated Apoptosis Involving MAPK and mTOR Signaling Pathways in Human Cervical Cancer Cells. Int J Mol Sci. 2018 Jun 5;19(6):1664. doi: https://doi.org/10.3390/ijms19061664. PMID: 29874795; PMCID: PMC6032149

  142. Munagala R, Aqil F, Jeyabalan J, Gupta RC (2015) Tanshinone IIA inhibits viral oncogene expression leading to apoptosis and inhibition of cervical cancer. Cancer Lett. Jan 28;356(2 Pt B):536 – 46. doi: https://doi.org/10.1016/j.canlet.2014.09.037. Epub 2014 Oct 7. PMID: 25304375

  143. Liu Z, Zhu W, Kong X, Chen X, Sun X, Zhang W, Zhang R (2019 Nov) Tanshinone IIA inhibits glucose metabolism leading to apoptosis in cervical cancer. Oncol Rep 42(5):1893–1903. doi: https://doi.org/10.3892/or.2019.7294Epub 2019 Aug 27. PMID: 31485631; PMCID: PMC6775814

  144. Che Y, Li J, Li Z, Li J, Wang S, Yan Y, Zou K, Zou L (2018 Aug) Osthole enhances antitumor activity and irradiation sensitivity of cervical cancer cells by suppressing ATM/NFκB signaling. Oncol Rep 40(2):737–747. doi: https://doi.org/10.3892/or.2018.6514Epub 2018 Jun 20. PMID: 29989651; PMCID: PMC6072300

  145. Kim B, Kim HS, Jung EJ, Lee JY, Tsang K, Lim B, Song JM YS. Curcumin induces ER stress-mediated apoptosis through selective generation of reactive oxygen species in cervical cancer cells.Mol Carcinog. 2016May; 55(5):918–28. doi: https://doi.org/10.1002/mc.22332. Epub 2015 May 15. PMID: 25980682.

  146. Zhang F, Thakur K, Hu F, Zhang JG, Wei ZJ 10-Gingerol, a Phytochemical Derivative from “Tongling White Ginger”, inhibits Cervical Cancer: insights into the molecular mechanism and inhibitory targets.J Agric Food Chem. 2017 Mar15;65(10):2089–2099. doi: https://doi.org/10.1021/acs.jafc.7b00095. Epub 2017 Mar 1. PMID: 28230361.

  147. Phuah NH, Azmi MN, Awang K, Nagoor NH (2017 Apr) Down-regulation of MicroRNA-210 confers sensitivity towards 1’S-1’-Acetoxychavicol acetate (ACA) in Cervical Cancer cells by targeting SMAD4. Mol Cells 40(4):291–298. doi: https://doi.org/10.14348/molcells.2017.2285Epub 2017 Apr 12. PMID: 28401751; PMCID: PMC5424275

  148. Xiong Y, Chen L, Luo P (2015 May) N-Benzylcinnamide induces apoptosis in HPV16 and HPV18 cervical cancer cells via suppression of E6 and E7 protein expression. IUBMB Life 67(5):374–379. doi: https://doi.org/10.1002/iub.1380Epub 2015 Apr 23. PMID: 25914202

  149. Lin CL, Lee CH, Chen CM, Cheng CW, Chen PN, Ying TH, Hsieh YH (2018) Protodioscin induces apoptosis through ROS-Mediated endoplasmic reticulum stress via the JNK/p38 activation pathways in human cervical Cancer cells. Cell Physiol Biochem 46(1):322–334 Epub 2018 Mar 22. PMID: 29590661

    Article  CAS  PubMed  Google Scholar 

  150. Kuriakose GC, Lakshmanan MD, Bp A, Rs HK, Th AK, Ananthaswamy K C J. Extract of Penicillium sclerotiorum an endophytic fungus isolated from Cassia fistula L. induces cell cycle arrest leading to apoptosis through mitochondrial membrane depolarization in human cervical cancer cells.Biomed Pharmacother. 2018 Sep; 105:1062–1071. doi: 10.1016/j.biopha.2018.06.094. Epub 2018 Jun 19. PMID: 30021342.

  151. Nguyen VT, Lee JS, Qian ZJ, Li YX, Kim KN, Heo SJ, Jeon YJ, Park WS, Choi IW, Je JY, Jung WK Gliotoxin isolated from marine fungus aspergillus sp. induces apoptosis of human cervical cancer and chondrosarcoma cells.Mar Drugs. 2013 Dec24;12(1):69–87. doi: https://doi.org/10.3390/md12010069. PMID: 24368570; PMCID: PMC3917261.

  152. Dan VM, Muralikrishnan B, Sanawar R, Burkul JSV, Srinivas BB, Lekshmi KP, Pradeep A, Dastager NS, Santhakumari SG, Santhoshkumar B, Kumar TR, Pillai RA MR. Streptomyces sp metabolite(s) promotes Bax mediated intrinsic apoptosis and autophagy involving inhibition of mTOR pathway in cervical cancer cell lines. Sci Rep. 2018 Feb 12;8(1):2810. doi: https://doi.org/10.1038/s41598-018-21249-5. PMID: 29434241; PMCID: PMC5809390

  153. Zhou L, Qin J, Ma L, Li H, Li L, Ning C, Gao W, Yu H, Han L, Rosoloactone (2017 Nov) A natural diterpenoid inducing apoptosis in human cervical cancer cells through endoplasmic reticulum stress and mitochondrial damage. Biomed Pharmacother 95:355–362 Epub 2017 Sep 12. PMID: 28858734

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Authors 1 and 2 designed the main draft of the manuscript text and wrote it. Author 1 drew the figure. Author 5 made Table 1. Authors 2 to 7 suggested reasonable changes, and authors 2 and 3 finalised the manuscript. Authors 1, 2, 3 and 5 did the revision.

Corresponding author

Correspondence to Ritu Yadav.

Ethics declarations

Competing interests

The authors have no competing interests to declare relevant to this article’s content.

Compliance with ethical standard

This article does not contain any studies with human participants or animals performed by any authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, C., Yadav, R., Chabbra, R. et al. Overview of genetic and epigenetic regulation of human papillomavirus and apoptosis in cervical cancer. Apoptosis 28, 683–701 (2023). https://doi.org/10.1007/s10495-023-01812-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01812-w

Keywords

Navigation