Skip to main content

Advertisement

Log in

The influence of environmental pollution on the allergenic potential of grass pollen

  • Review Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Grass pollen is the most common cause of pollen allergies in Europe. However, growing evidence suggests that air pollution and climate change may contribute to the rising number of allergic cases and worsening symptoms. This narrative review article aims to summarize the impacts of increased health complications based on pollution research in recent years, obtained from ecological, molecular and clinical studies to provide a new perspective on the impact of pollutants on the environment and human health. Our detailed literature review includes studies on pollution and its effect on pollen allergens, which cause allergy symptoms, but only in the case of three grass species: Dactylis glomerata, Lolium perenne and Phleum pratense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: USDA NRCS, 1995, Northeast wetland flora: Field office guide to plant species). B. Lolium perenne (photographer: Marilee Lovit. Source: Go Botany)). C. Phleum pratense (photographer: James R. Johnson. Source: USDA NRCS, 1992, Western wetland flora: Field office guide to plant species. Provided by USDA NRCS Wetland Science Institute (WSI), Sacramento). Provided by USDA NRCS Wetland Science Institute (WSI), Chester); USDA, NRCS. 2023. PLANTS Database (https://plants.sc.egov.usda.gov/, 11/10/2023). National Plant Data Team, Greensboro, NC 27401–4901 USA

Similar content being viewed by others

Data availability

Due to the nature of this research, no new data were created or analyzed in this study. This article is conceptual and based entirely on previously published data cited within the manuscript.

References

  • Aguilera, J., Ibarra-Mejia, G., & Johnson, M. (2023). Editorial: The impact of climate change on allergic disease. Frontiers in Allergy, 4, 1246899.

    Article  Google Scholar 

  • Akhouri, S., & House, S. A. (2024). Allergic Rhinitis. StatPearls Publishing LLC.

    Google Scholar 

  • Albertine, J. M., et al. (2014). Projected carbon dioxide to increase grass pollen and allergen exposure despite higher ozone levels. PLoS ONE, 9(11), e111712.

    Article  Google Scholar 

  • Aleksic, I., et al. (2014). The importance of cross-reactivity in grass pollen allergy. Archives of Biological Sciences, 66(3), 1149–1155.

    Article  Google Scholar 

  • Alfaya Arias, T., et al. (2022). Allergenicity of grass pollen from polluted and nonpolluted areas measured using the skin prick test and basophil activation test. Journal of Investigational Allergology and Clinical Immunology, 32(5), 393–395.

    Article  CAS  Google Scholar 

  • Andersson, K., & Lidholm, J. (2003). Characteristics and immunobiology of grass pollen allergens. International Archives of Allergy and Immunology, 130(2), 87–107.

    Article  CAS  Google Scholar 

  • Angulo-Bejarano, P. I., Puente-Rivera, J., & Cruz-Ortega, R. (2021). Metal and metalloid toxicity in plants: An overview on molecular aspects. Plants (basel). https://doi.org/10.3390/plants10040635

    Article  Google Scholar 

  • Ansari, A. A., Killoran, E. A., & Marsh, D. G. (1987). An investigation of human immune response to perennial ryegrass (Lolium perenne) pollen cytochrome c (Lol p X). The Journal of Allergy and Clinical Immunology, 80(2), 229–235.

    Article  CAS  Google Scholar 

  • Ansari, A. A., Shenbagamurthi, P., & Marsh, D. G. (1989a). Complete primary structure of a Lolium perenne (perennial rye grass) pollen allergen, Lol p III: Comparison with known Lol p I and II sequences. Biochemistry, 28(21), 8665–8670.

    Article  CAS  Google Scholar 

  • Ansari, A. A., et al. (1989b). Human immune responsiveness to Lolium perenne pollen allergen Lol p III (Rye III) is associated with HLA-DR3 and DR5. Human Immunology, 25(1), 59–71.

    Article  CAS  Google Scholar 

  • Armentia, A., et al. (2002). Is lolium pollen from an urban environment more allergenic than rural pollen? Allergologia Et Immunopathologia, 30(4), 218–224.

    Article  CAS  Google Scholar 

  • Armentia, A., et al. (2019). Molecular study of hypersensitivity to spores in adults and children from castile & leon. Allergologia Et Immunopathologia, 47(4), 350–356.

    Article  CAS  Google Scholar 

  • Asher, I., et al. (2000). Prevention of allergy and asthma: Interim report. Allergy, 55(11), 1069–1088.

    CAS  Google Scholar 

  • Basak, T., & Bhattacharya, K. (2023). Seasonal pollinosis due to kans grass pollen: Prevalence and immune-biochemical approach. Aerobiology, 1, 37–53. https://doi.org/10.3390/aerobiology1010004

    Article  Google Scholar 

  • Behrendt, H., et al. (1999). Timothy grass (Phleum pratense L.) pollen as allergen carriers and initiators of an allergic response. International Archives of Allergy and Immunology., 118(2–4), 414–418.

    Article  CAS  Google Scholar 

  • Bergmann, K. C., et al. (2017). A novel experimental technology for testing efficacy of air purifiers on pollen reduction. Allergo J Int, 26(1), 1–6.

    Article  Google Scholar 

  • Bergmann, K. C., Hartung, T., & Zuberbier, T. (2024). Individual wearable air purifier protects against pollen, house dust mite, and cat allergens: Report from an allergen exposure chamber. Allergologie Select, 8, 70–77.

    Article  Google Scholar 

  • Bhalla, P. L., Swoboda, I., & Singh, M. B. (2012). Reduction in allergenicity of grass pollen by genetic engineering. International Archives of Allergy and Immunology, 124(1–3), 51–54.

    Google Scholar 

  • Blaher, B., et al. (1996). Identification of T-cell epitopes of Lol p 9, a major allergen of ryegrass (Lolium perenne) pollen. The Journal of Allergy and Clinical Immunology, 98(1), 124–132.

    Article  CAS  Google Scholar 

  • Bonato, M., et al. (2021). Air pollution exposure impairs airway epithelium IFN-β expression in pre-school children. Frontiers in Immunology, 12, 731968.

    Article  CAS  Google Scholar 

  • Brandt, E. B., et al. (2015). Exposure to allergen and diesel exhaust particles potentiates secondary allergen-specific memory responses, promoting asthma susceptibility. The Journal of Allergy and Clinical Immunology, 136(2), 295-303.e7.

    Article  CAS  Google Scholar 

  • Capone, P., Lancia, A., & D’Ovidio, M. C. (2023a). Interaction between air pollutants and pollen grains: Effects on public and occupational health. Atmosphere, 14(10), 1544.

    Article  CAS  Google Scholar 

  • Capone, P., Lancia, A., & D’Ovidio, M. C. (2023b). Interaction between air pollutants and pollen grains: Effects on public and occupational health. Atmosphere. https://doi.org/10.3390/atmos14101544

    Article  Google Scholar 

  • Carlsen, H. K., et al. (2022). Birch pollen, air pollution and their interactive effects on airway symptoms and peak expiratory flow in allergic asthma during pollen season—A panel study in Northern and Southern Sweden. Environmental Health, 21(1), 63.

    Article  CAS  Google Scholar 

  • Cecchi, L., et al. (2021). Allergenicity at component level of sub-pollen particles from different sources obtained by osmolar shock: A molecular approach to thunderstorm-related asthma outbreaks. Clinical and Experimental Allergy, 51(2), 253–261.

    Article  CAS  Google Scholar 

  • Chamani, S., et al. (2023). Heavy metals in contact dermatitis: A review. Journal of Trace Elements in Medicine and Biology, 79, 127240.

    Article  CAS  Google Scholar 

  • Chassard, G., et al. (2015). Kinetic of NO2 uptake by Phleum pratense pollen: Chemical and allergenic implications. Environmental Pollution, 196, 107–113.

    Article  CAS  Google Scholar 

  • Csiszár, A., et al. (2000). Increased interferon-gamma (IFN-gamma), IL-10 and decreased IL-4 mRNA expression in peripheral blood mononuclear cells (PBMC) from patients with systemic lupus erythematosus (SLE). Clinical and Experimental Immunology, 122(3), 464–470.

    Article  Google Scholar 

  • D’Amato, G., et al. (2015). Meteorological conditions, climate change, new emerging factors, and asthma and related allergic disorders. A statement of the world allergy organization. World Allergy Organization Journal, 8(1), 25.

    Article  Google Scholar 

  • D’Amato, G., et al. (2021). Thunderstorm allergy and asthma: State of the art. Multidisciplinary Respiratory Medicine, 16(1), 806.

    Google Scholar 

  • D’Amato, G., et al. (2023). Pollen respiratory allergy: Is it really seasonal? World Allergy Organization Journal, 16(7), 100799.

    Article  Google Scholar 

  • Davies, J. M. (2014). Grass pollen allergens globally: The contribution of subtropical grasses to burden of allergic respiratory diseases. Clinical & Experimental Allergy, 44(6), 790–801.

    Article  CAS  Google Scholar 

  • Davies, J. M., et al. (2022). The AusPollen partnership project: Allergenic airborne grass pollen seasonality and magnitude across temperate and subtropical eastern Australia, 2016–2020. Environmental Research, 214, 113762.

    Article  CAS  Google Scholar 

  • Devis, D. L., Davies, J. M., & Zhang, D. (2017). Molecular features of grass allergens and development of biotechnological approaches for allergy prevention. Biotechnology Advances, 35(5), 545–556.

    Article  CAS  Google Scholar 

  • Diener, C., Skibbe, K., & Jäger, L. (1984). Identification of allergens in 5 grasses using crossed radioimmunoelectrophoresis (CRIE). Allerg Immunol (leipz), 30(1), 14–22.

    CAS  Google Scholar 

  • Dolecek, C., et al. (1993). Molecular characterization of Phl p II, a major timothy grass (Phleum pratense) pollen allergen. FEBS Letters, 335(3), 299–304.

    Article  CAS  Google Scholar 

  • Durham, S. R., & Shamji, M. H. (2023). Allergen immunotherapy: Past, present and future. Nature Reviews Immunology, 23(5), 317–328.

    Article  CAS  Google Scholar 

  • Ebrahimifakhar, A., et al. (2024). A systematic review and meta-analysis of field studies of portable air cleaners: Performance, user behavior, and by-product emissions. Science of the Total Environment, 912, 168786.

    Article  CAS  Google Scholar 

  • Erpenbeck, V. J., et al. (2005). Surfactant protein D increases phagocytosis and aggregation of pollen-allergen starch granules. American Journal of Physiology-Lung Cellular and Molecular Physiology, 288(4), L692–L698.

    Article  CAS  Google Scholar 

  • Farag, M. A., et al. (2023). Dietary macrominerals: Updated review of their role and orchestration in human nutrition throughout the life cycle with sex differences. Curr Res Food Sci, 6, 100450.

    Article  CAS  Google Scholar 

  • Farah, J., et al. (2020a). Influence of Phleum pratense pollen grains rupture on lipids extraction. Aerobiologia, 36(4), 683–695.

    Article  Google Scholar 

  • Farah, J., et al. (2020b). Extractable lipids from Phleum pratense pollen grains and their modifications by ozone exposure. Aerobiologia, 36(2), 171–182.

    Article  Google Scholar 

  • Fernández-González, M., et al. (2023). Short-term exposure of Dactylis glomerata pollen to atmospheric gaseous pollutants is related to an increase in IgE binding in patients with grass pollen allergies. Plants. https://doi.org/10.3390/plants12010076

    Article  Google Scholar 

  • Filardo, S., et al. (2020). Impact of air pollution on the composition and diversity of human gut microbiota in general and vulnerable populations: A systematic review. Toxics. https://doi.org/10.3390/toxics10100579

    Article  Google Scholar 

  • Fischer, S., et al. (1996). Characterization of Phl p 4, a major timothy grass (Phleum pratense) pollen allergen. The Journal of Allergy and Clinical Immunology, 98(1), 189–198.

    Article  CAS  Google Scholar 

  • Focke-Tejkl, M., et al. (2015). Development and characterization of a recombinant, hypoallergenic, peptide-based vaccine for grass pollen allergy. Journal of Allergy and Clinical Immunology, 135(5), 1207-1271.e1-11.

    Article  CAS  Google Scholar 

  • Fried, S., Mackie, B., & Nothwehr, E. J. (2003). Nitrate and phosphate levels positively affect the growth of algae species found in perry pond. Tillers, 4, 21–24.

    Google Scholar 

  • Friedman, J., & Barrett, S. C. H. (2009). Wind of change: New insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Annals of Botany, 103(9), 1515–1527.

    Article  Google Scholar 

  • Galli, S. J., Tsai, M., & Piliponsky, A. M. (2008). The development of allergic inflammation. Nature, 454(7203), 445–454.

    Article  CAS  Google Scholar 

  • Galveias, A., et al. (2021). Air pollutants NO2− and O3− induced Dactylis glomerata L. pollen oxidative defences and enhanced its allergenic potential. Aerobiologia, 37(1), 127–137.

    Article  Google Scholar 

  • García-Mozo, H. (2017). Poaceae pollen as the leading aeroallergen worldwide: A review. Allergy, 72(12), 1849–1858.

    Article  Google Scholar 

  • Gasana, J., et al. (2012). Motor vehicle air pollution and asthma in children: A meta-analysis. Environmental Research, 117, 36–45.

    Article  CAS  Google Scholar 

  • Gennaro, D. A., Isabella, A.-M., & Maria, D. A. (2022). Outdoor allergens: Pollens and molds and their relationship to climate changes. In S. M. Janes (Ed.), Encyclopedia of respiratory medicine (second edition) (pp. 410–417). Academic Press.

    Chapter  Google Scholar 

  • Grewling, Ł, Bogawski, P., & Smith, M. (2016). Pollen nightmare: Elevated airborne pollen levels at night. Aerobiologia, 32(4), 725–728.

    Article  CAS  Google Scholar 

  • Guedes, A., et al. (2009). Comparison between urban and rural pollen of Chenopodium alba and characterization of adhered pollutant aerosol particles. Journal of Aerosol Science, 40(1), 81–86.

    Article  CAS  Google Scholar 

  • Guérin-Marchand, C., et al. (1996). Cloning, sequencing and immunological characterization of Dac g 3, a major allergen from Dactylis glomerata pollen. Molecular Immunology, 33(9), 797–806.

    Article  Google Scholar 

  • Himly, M., et al. (2016). Standardization of allergen products: 2. Detailed characterization of GMP-produced recombinant Phl p 50109 as european pharmacopoeia reference standard. Allergy, 71(4), 495–504.

    Article  CAS  Google Scholar 

  • Holt, P. G., et al. (1999). The role of allergy in the development of asthma. Nature, 402(6760), 12–17.

    Article  Google Scholar 

  • Jaggi, K. S., et al. (1989). Identification of two distinct allergenic sites on ryegrass-pollen allergen, Lol p IV. The Journal of Allergy and Clinical Immunology, 83(4), 845–852.

    Article  CAS  Google Scholar 

  • Jaishankar, M., et al. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72.

    Article  Google Scholar 

  • Jankauskas, B., & Jankauskiene, G. (2003). Erosion-preventive crop rotations for landscape ecological stability in upland regions of Lithuania. Agriculture, Ecosystems & Environment, 95(1), 129–142.

    Article  Google Scholar 

  • Kim, K.-H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136–143.

    Article  CAS  Google Scholar 

  • Knox, R. B., et al. (1997). Major grass pollen allergen Lol p 1 binds to diesel exhaust particles: Implications for asthma and air pollution. Clinical and Experimental Allergy, 27(3), 246–251.

    Article  CAS  Google Scholar 

  • Lam, H. C. Y., Jarvis, D., & Fuertes, E. (2021). Interactive effects of allergens and air pollution on respiratory health: A systematic review. Science of the Total Environment, 757, 143924.

    Article  CAS  Google Scholar 

  • Leduc-Brodard, V., et al. (1996). Characterization of Dac g 4, a major basic allergen from Dactylis glomerata pollen. The Journal of Allergy and Clinical Immunology, 98(6 Pt 1), 1065–1072.

    Article  CAS  Google Scholar 

  • Lee, Y. G., et al. (2021). Effects of Air Pollutants on Airway Diseases. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph18189905

    Article  Google Scholar 

  • Li, L., et al. (2020). Efficacy of indoor air purification in the treatment of Artemisia pollen-allergic rhinitis: A randomised, double-blind, clinical controlled trial. Clinical Otolaryngology, 45(3), 394–401.

    Article  Google Scholar 

  • Ligowe, I. S., et al. (2020). Selenium biofortification of crops on a malawi alfisol under conservation agriculture. Geoderma, 369, 114315.

    Article  CAS  Google Scholar 

  • Lucas, J. A., et al. (2019). Oxidative stress in ryegrass growing under different air pollution levels and its likely effects on pollen allergenicity. Plant Physiology and Biochemistry, 135, 331–340.

    Article  CAS  Google Scholar 

  • Makrufardi, F., et al. (2023). Extreme weather and asthma: A systematic review and meta-analysis. European Respiratory Review, 32(168), 230019.

    Article  Google Scholar 

  • Mampage, C. B. A., et al. (2022). Characterization of sub-pollen particles in size-resolved atmospheric aerosol using chemical tracers. Atmospheric Environment: X. https://doi.org/10.1016/j.aeaoa.2022.100177

    Article  Google Scholar 

  • Manduzio, H., et al. (2012). Glycoproteins are species-specific markers and major IgE reactants in grass pollens. Plant Biotechnology Journal, 10(2), 184–194.

    Article  CAS  Google Scholar 

  • Manzano, J. M. M., et al. (2022). Drivers of the release of the allergens Bet v 1 and Phl p 5 from birch and grass pollen. Environmental Research, 214, 113987.

    Article  Google Scholar 

  • Masuch, G. I., et al. (1997). Ozone increases group 5 allergen content of Lolium perenne. Allergy, 52(8), 874–875.

    Article  CAS  Google Scholar 

  • Matricardi, P. M., et al. (2016). EAACI molecular allergology user’s guide. Pediatric Allergy and Immunology, 27(S23), 1–250.

    Article  Google Scholar 

  • Mehri, A. (2020). Trace Elements in Human Nutrition (II)—An Update. International Journal of Preventive Medicine, 11, 2.

    Article  Google Scholar 

  • Melén, E., et al. (2021). Air pollution and IgE sensitization in 4 european birth cohorts—the MeDALL project. Journal of Allergy and Clinical Immunology, 147(2), 713–722.

    Article  Google Scholar 

  • Miao, C., et al. (2022). Insights into the response of perennial ryegrass to abiotic stress: Underlying survival strategies and adaptation mechanisms. Life (basel). https://doi.org/10.3390/life12060860

    Article  Google Scholar 

  • Michailopoulos, P., et al. (2017). Allergic conjunctivitis in patients with respiratory allergic symptoms; a retrospective study in Greece. Medical Hypothesis, Discovery and Innovation in Ophthalmology, 6(1), 3–9.

    Google Scholar 

  • Mitra, S., et al. (2022). Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University - Science, 34(3), 101865.

    Article  Google Scholar 

  • Motta, A. C., et al. (2006). Traffic-related air pollutants induce the release of allergen-containing cytoplasmic granules from grass pollen. International Archives of Allergy and Immunology, 139(4), 294–298.

    Article  CAS  Google Scholar 

  • Mourad, W., et al. (1988). Study of the epitope structure of purified Dac G I and Lol p I, the major allergens of Dactylis glomerata and Lolium perenne pollens, using monoclonal antibodies. The Journal of Immunology, 141(10), 3486–3491.

    Article  CAS  Google Scholar 

  • Muthu, M., et al. (2013). Reviewing the impact of vehicular pollution on road-side plants—Future perspectives. Sustainability. https://doi.org/10.3390/su13095114

    Article  Google Scholar 

  • Navarro, J. A., Sanchez-Navarro, J. A., & Pallas, V. (2019). Chapter one—Key checkpoints in the movement of plant viruses through the host. In M. Kielian, T. C. Mettenleiter, & M. J. Roossinck (Eds.), Advances in virus research (pp. 1–64). Elsevier.

    Google Scholar 

  • Nguyen, T. T., et al. (2016). A Longitudinal study of association between heavy metals and itchy eyes, coughing in chronic cough patients: Related with non-immunoglobulin E mediated mechanism. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph13010110

    Article  Google Scholar 

  • Obersteiner, A., et al. (2016). Pollen-associated microbiome correlates with pollution parameters and the allergenicity of pollen. PLoS ONE, 11(2), e0149545.

    Article  Google Scholar 

  • Park, K. H., et al. (2020). Effects of air purifiers on patients with allergic rhinitis: A multicenter, randomized, double-blind, and placebo-controlled study. Yonsei Medical Journal, 61(8), 689–697.

    Article  Google Scholar 

  • Peltre, G., Derouet, L., & Cerceau-Larrival, M.-T. (1991). Model treatments simulating environmental action on allergenic Dactylis glomerata pollen. Grana, 30(1), 59–61.

    Article  Google Scholar 

  • Perez, M., et al. (1990). cDNA cloning and immunological characterization of the rye grass allergen Lol p I. Journal of Biological Chemistry, 265(27), 16210–16215.

    Article  CAS  Google Scholar 

  • Petersen, A., et al. (2006). Phl p 3: Structural and immunological characterization of a major allergen of timothy grass pollen. Clinical and Experimental Allergy, 36(6), 840–849.

    Article  CAS  Google Scholar 

  • Phosri, A., et al. (2017). Interactive effects of specific fine particulate matter compositions and airborne pollen on frequency of clinic visits for pollinosis in Fukuoka. Japan. Environ Res, 156, 411–419.

    Article  CAS  Google Scholar 

  • Popek, E. (2018). Chapter 2—Environmental chemical pollutants. In E. Popek (Ed.), Sampling and analysis of environmental chemical pollutants (second edition) (pp. 13–69). Elsevier.

    Chapter  Google Scholar 

  • Popescu, F. D. (2015). Cross-reactivity between aeroallergens and food allergens. World Journal of Methodology, 5(2), 31–50.

    Article  Google Scholar 

  • Putnam, D. H., & Orloff, S. B. (2014). Forage Crops. In N. K. Van Alfen (Ed.), Encyclopedia of agriculture and food systems (pp. 381–405). Academic Press.

    Chapter  Google Scholar 

  • Rafati Rahimzadeh, M., et al. (2017). Cadmium toxicity and treatment: An update. Caspian Journal of Internal Medicine, 8(3), 135–145.

    Google Scholar 

  • Reinmuth-Selzle, K., et al. (2017). Air pollution and climate change effects on allergies in the anthropocene: Abundance, interaction, and modification of allergens and adjuvants. Environmental Science & Technology, 51(8), 4119–4141.

    Article  CAS  Google Scholar 

  • Reinmuth-Selzle, K., et al. (2023). Chemical modification by peroxynitrite enhances TLR4 activation of the grass pollen allergen Phl p 5. Frontiers in Allergy. https://doi.org/10.3389/falgy.2023.1066392

    Article  Google Scholar 

  • Risse, U., et al. (2000). Health-relevant interaction between airborne particulate matter and aeroallergens (pollen). Journal of Aerosol Science, 31, 27–28.

    Article  Google Scholar 

  • Rivas-Arancibia, S., et al. (2022). Ozone pollution, oxidative stress. Regulatory T Cells and Antioxidants. Antioxidants (basel). https://doi.org/10.3390/antiox11081553

    Article  Google Scholar 

  • Roberts, A. M., et al. (1992). Recombinant pollen allergens from Dactylis glomerata: Preliminary evidence that human IgE cross-reactivity between Dac g II and Lol p I/II is increased following grass pollen immunotherapy. Immunology, 76(3), 389–396.

    CAS  Google Scholar 

  • Rogerieux, F., et al. (2007). Modifications of Phleum pratense grass pollen allergens following artificial exposure to gaseous air pollutants (O(3), NO(2), SO(2)). International Archives of Allergy and Immunology, 143(2), 127–134.

    Article  CAS  Google Scholar 

  • Santoro, E., Kalita, P., & Novak, P. (2021). The role of saline nasal sprays or drops in nasal hygiene: A review of the evidence and clinical perspectives. Rhinology Online, 4(4), 1–16.

    Article  Google Scholar 

  • Ščevková, J., et al. (2023). Co-occurrence of airborne biological and anthropogenic pollutants in the central european urban ecosystem. Environmental Science and Pollution Research, 30(10), 26523–26534.

    Article  Google Scholar 

  • Schedle, A., et al. (1998). Metal ion-induced toxic histamine release from human basophils and mast cells. Journal of Biomedical Materials Research, 39(4), 560–567.

    Article  CAS  Google Scholar 

  • Sedghy, F., et al. (2018). Interaction between air pollutants and pollen grains: The role on the rising trend in allergy. Reports of Biochemistry & Molecular Biology, 6(2), 219–224.

    CAS  Google Scholar 

  • Shamji, M. H., & Durham, S. R. (2017). Mechanisms of allergen immunotherapy for inhaled allergens and predictive biomarkers. The Journal of Allergy and Clinical Immunology, 140(6), 1485–1498.

    Article  CAS  Google Scholar 

  • Singer, B. D., et al. (2005). Increasing Amb a 1 content in common ragweed (Ambrosia artemisiifolia) pollen as a function of rising atmospheric CO2 concentration. Functional Plant Biology, 32(7), 667–670.

    Article  CAS  Google Scholar 

  • Smereczański, N. M., & Brzóska, M. M. (2023). Current levels of environmental exposure to cadmium in industrialized countries as a risk factor for kidney damage in the general population: A comprehensive review of available data. International Journal of Molecular Sciences, 24(9), 8413.

    Article  Google Scholar 

  • Smiljanic, K., et al. (2019). In-depth quantitative profiling of post-translational modifications of timothy grass pollen allergome in relation to environmental oxidative stress. Environment International, 126, 644–658.

    Article  CAS  Google Scholar 

  • Suck, R., et al. (1999). Rapid and efficient purification of Phleum pratense major allergens Phl p 1 and group Phl p 2/3 using a two-step procedure. Journal of Immunological Methods, 229(1–2), 73–80.

    Article  CAS  Google Scholar 

  • Suphioglu, C., et al. (1999). Molecular cloning, expression and immunological characterisation of Lol p 5C, a novel allergen isoform of rye grass pollen demonstrating high IgE reactivity. FEBS Letters, 462(3), 435–441.

    Article  CAS  Google Scholar 

  • Swoboda, I., et al. (2004). Molecular Characterization of polygalacturonases as grass pollen-specific marker allergens: Expulsion from pollen via submicronic respirable particles1. The Journal of Immunology, 172(10), 6490–6500.

    Article  CAS  Google Scholar 

  • Taketomi, E. A., et al. (2006). Pollen allergic disease: Pollens and its major allergens. Brazilian Journal of Otorhinolaryngology, 72(4), 562–567.

    Article  Google Scholar 

  • Tamborini, E., et al. (1995). Recombinant allergen Lol p II: Expression, purification and characterization. Molecular Immunology, 32(7), 505–513.

    Article  CAS  Google Scholar 

  • Tiwari, R., Bhalla, P. L., & Singh, M. B. (2009). Evaluation of molecular basis of cross reactivity between rye and bermuda grass pollen allergens. Allergology International, 58(4), 557–564.

    Article  CAS  Google Scholar 

  • van Oort, E., et al. (2001). Immunochemical characterization of two Pichia pastoris-derived recombinant group 5 Dactylis glomerata isoallergens. International Archives of Allergy and Immunology, 126(3), 196–205.

    Article  Google Scholar 

  • van Ree, R., et al. (1995). Lol p XI, a new major grass pollen allergen, is a member of a family of soybean trypsin inhibitor-related proteins. The Journal of Allergy and Clinical Immunology, 95(5 Pt 1), 970–978.

    Google Scholar 

  • Verscheure, P., et al. (2023). Impact of environmental nitrogen pollution on pollen allergy: A scoping review. Science of the Total Environment, 893, 164801.

    Article  CAS  Google Scholar 

  • Visez, N., et al. (2020). Atmospheric particulate matter adhesion onto pollen: A review. Aerobiologia, 36(1), 49–62.

    Article  Google Scholar 

  • Vrtala, S., et al. (1999). Molecular, immunological, and structural characterization of Phl p 6, a major allergen and P-particle-associated protein from Timothy grass (Phleum pratense) pollen. The Journal of Immunology, 163(10), 5489–5496.

    Article  CAS  Google Scholar 

  • Wang, N., et al. (2023). Arsenic occurrence and cycling in the aquatic environment: A comparison between freshwater and seawater. Water. https://doi.org/10.3390/w15010147

    Article  Google Scholar 

  • Weber, R. W. (2003). Patterns of pollen cross-allergenicity. Journal of Allergy and Clinical Immunology, 112(2), 229–239.

    Article  Google Scholar 

  • Xu, Y., et al. (2021). Sensitization profiles of timothy grass pollen in northern China. Journal of Asthma and Allergy, 14, 1431–1439.

    Article  CAS  Google Scholar 

  • Xue, Y., et al. (2020). The influence of air pollution on respiratory microbiome: A link to respiratory disease. Toxicology Letters, 334, 14–20.

    Article  CAS  Google Scholar 

  • Zhu, Y., et al. (2023). Experimental observation of the effect of immunotherapy on CD4+ T cells and Th1/Th2 cytokines in mice with allergic rhinitis. Scientific Reports, 13(1), 5273.

    Article  CAS  Google Scholar 

  • Hannaway, D., et al., (1999) Perennial ryegrass (Lolium perenne L.)

Download references

Funding

This work was supported by the Ministry of Science, Technological Development, and Innovations of The Republic of Serbia, Grant No. 200177 (Based on Contract No. 451–03-66/2024–03/200177). This study was supported by the Ministry of Science, Technological Development, and Innovation of Republic of Serbia, Grant No. 200168 (Based on Contract No. 451–03-66/2024–03/200168).

Author information

Authors and Affiliations

Authors

Contributions

Ivana Prodić: Conceptualization; Data curation; Investigation; Writing—original draft; and Writing—review & editing; Rajna Minić Writing—original draft; and Writing—review & editing; Marija Stojadinović: Conceptualization; Data curation; Investigation; Writing—original draft; and Writing—review & editing.

Corresponding author

Correspondence to Ivana Prodić.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests in the research detailed in this manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prodić, I., Minić, R. & Stojadinović, M. The influence of environmental pollution on the allergenic potential of grass pollen. Aerobiologia (2024). https://doi.org/10.1007/s10453-024-09829-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10453-024-09829-7

Keywords

Navigation