Skip to main content
Log in

Alternative splicing shapes the transcriptome complexity in blackgram [Vigna mungo (L.) Hepper]

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Vigna mungo, a highly consumed crop in the pan-Asian countries, is vulnerable to several biotic and abiotic stresses. Understanding the post-transcriptional gene regulatory cascades, especially alternative splicing (AS), may underpin large-scale genetic improvements to develop stress-resilient varieties. Herein, a transcriptome based approach was undertaken to decipher the genome-wide AS landscape and splicing dynamics in order to establish the intricacies of their functional interactions in various tissues and stresses. RNA sequencing followed by high-throughput computational analyses identified 54,526 AS events involving 15,506 AS genes that generated 57,405 transcripts isoforms. Enrichment analysis revealed their involvement in diverse regulatory functions and demonstrated that transcription factors are splicing-intensive, splice variants of which are expressed differentially across tissues and environmental cues. Increased expression of a splicing regulator NHP2L1/SNU13 was found to co-occur with lower intron retention events. The host transcriptome is significantly impacted by differential isoform expression of 1172 and 765 AS genes that resulted in 1227 (46.8% up and 53.2% downregulated) and 831 (47.5% up and 52.5% downregulated) transcript isoforms under viral pathogenesis and Fe2+ stressed condition, respectively. However, genes experiencing AS operate differently from the differentially expressed genes, suggesting AS is a unique and independent mode of regulatory mechanism. Therefore, it can be inferred that AS mediates a crucial regulatory role across tissues and stressful situations and the results would provide an invaluable resource for future endeavours in V. mungo genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available in the NCBI-SRA repository under BioProject Accession numbers—PRJNA283940, PRJNA288413, PRJNA604405 and PRJNA684773.

References

  • Afgan E, Baker D, Batut B, Van Den Beek M, Bouvier D, Čech M, Chilton J, Clements D, Coraor N, Grüning BA (2018) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46:W537–W544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akerman M, Mandel-Gutfreund Y (2006) Alternative splicing regulation at tandem 3′ splice sites. Nucleic Acids Res 34:23–31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barbazuk WB, Fu Y, McGinnis KM (2008) Genome-wide analyses of alternative splicing in plants: opportunities and challenges. Genome Res 18:1381–1392

    CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    CAS  PubMed  Google Scholar 

  • Campbell MA, Haas BJ, Hamilton JP, Mount SM, Buell CR (2006) Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genomics 7:1–17

    Google Scholar 

  • Chaudhary S, Khokhar W, Jabre I, Reddy AS, Byrne LJ, Wilson CM, Syed NH (2019) Alternative splicing and protein diversity: plants versus animals. Front Plant Sci 10:708

    PubMed  PubMed Central  Google Scholar 

  • Cui P, Xiong L (2015) Environmental stress and pre-mRNA splicing. Mol Plant 8:1302–1303

    CAS  PubMed  Google Scholar 

  • Das D, Baruah IK, Panda D, Paswan RR, Acharjee S, Sarmah BK (2021) Bruchid beetle ovipositioning mediated defense responses in black gram pods. BMC Plant Biol 21:1–22

    Google Scholar 

  • De Bruin RG, Shiue L, Prins J, De Boer HC, Singh A, Fagg WS, Van Gils JM, Duijs JM, Katzman S, Kraaijeveld AO (2016) Quaking promotes monocyte differentiation into pro-atherogenic macrophages by controlling pre-mRNA splicing and gene expression. Nat Commun 7:1–20

    Google Scholar 

  • Dichmann DS, Walentek P, Harland RM (2015) The alternative splicing regulator Tra2b is required for somitogenesis and regulates splicing of an inhibitory Wnt11b isoform. Cell Rep 10:527–536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding F, Cui P, Wang Z, Zhang S, Ali S, Xiong L (2014) Genome-wide analysis of alternative splicing of pre-mRNA under salt stress in Arabidopsis. BMC Genomics 15:1–14

    Google Scholar 

  • Felipez W, de Freitas KEJ, Dos Santos RS, Yamamoto RR, Costa de Oliveira A (2022) The roles of WRKY transcription factors in Malus spp. and Pyrus spp. Funct Integr Genomics 22:713–729

    CAS  PubMed  Google Scholar 

  • Filichkin SA, Priest HD, Givan SA, Shen R, Bryant DW, Fox SE, Wong W-K, Mockler TC (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 20:45–58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foissac S, Sammeth M (2007) ASTALAVISTA: dynamic and flexible analysis of alternative splicing events in custom gene datasets. Nucleic Acids Res 35:W297–W299

    PubMed  PubMed Central  Google Scholar 

  • Ganie SA, Reddy AS (2021) Stress-induced changes in alternative splicing landscape in rice: Functional significance of splice isoforms in stress tolerance. Biology 10:309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta P, Nutan KK, Singla-Pareek SL, Pareek A (2017) Abiotic stresses cause differential regulation of alternative splice forms of GATA transcription factor in rice. Front Plant Sci 8:1944

    PubMed  PubMed Central  Google Scholar 

  • Han Y, Zhu L, Li L, Wang Y, Zhao M, Wang K, Sun C, Chen J, Liu L, Chen P (2021) Characteristics of RNA alternative splicing and its potential roles in ginsenoside biosynthesis in a single plant of ginseng, Panax ginseng CA Meyer. Mol Genet Genomics 296:971–983

    CAS  PubMed  Google Scholar 

  • Hazra A, Mahadani P (2022) Delineating genome-wide alternative splicing landscapes and their functional significance in orchids. S Afr J Bot 148:552–560

    CAS  Google Scholar 

  • Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R (2015) InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics 16:1–7

    Google Scholar 

  • Hu B, Jin J, Guo A-Y, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    PubMed  Google Scholar 

  • Huang J, Lu X, Wu H, Xie Y, Peng Q, Gu L, Wu J, Wang Y, Reddy AS, Dong S (2020) Phytophthora effectors modulate genome-wide alternative splicing of host mRNAs to reprogram plant immunity. Mol Plant 13:1470–1484

    CAS  PubMed  Google Scholar 

  • Iida K, Shionyu M, Suso Y (2008) Alternative splicing at NAGNAG acceptor sites shares common properties in land plants and mammals. Mol Biol Evol 25:709–718

    CAS  PubMed  Google Scholar 

  • Imbriano C, Molinari S (2018) Alternative splicing of transcription factors genes in muscle physiology and pathology. Genes 9:107

    PubMed  PubMed Central  Google Scholar 

  • Iñiguez LP, Ramírez M, Barbazuk WB, Hernández G (2017) Identification and analysis of alternative splicing events in Phaseolus vulgaris and Glycine max. BMC Genomics 18:1–17

    Google Scholar 

  • Jabre I, Reddy AS, Kalyna M, Chaudhary S, Khokhar W, Byrne LJ, Wilson CM, Syed NH (2019) Does co-transcriptional regulation of alternative splicing mediate plant stress responses? Nucleic Acids Res 47:2716–2726

    CAS  PubMed  PubMed Central  Google Scholar 

  • James AB, Syed NH, Bordage S, Marshall J, Nimmo GA, Jenkins GI, Herzyk P, Brown JW, Nimmo HG (2012) Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. Plant Cell 24:961–981

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jegadeesan S, Raizada A, Dhanasekar P, Suprasanna P (2021) Draft genome sequence of the pulse crop blackgram [Vigna mungo (L.) Hepper] reveals potential R-genes. Sci Rep 11:1–10

    Google Scholar 

  • John S, Olas JJ, Mueller-Roeber B (2021) Regulation of alternative splicing in response to temperature variation in plants. J Exp Bot 72:6150–6163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalyna M, Simpson CG, Syed NH, Lewandowska D, Marquez Y, Kusenda B, Marshall J, Fuller J, Cardle L, McNicol J (2012) Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucleic Acids Res 40:2454–2469

    CAS  PubMed  Google Scholar 

  • Khan A, Mathelier A (2017) Intervene: a tool for intersection and visualization of multiple gene or genomic region sets. BMC Bioinformatics 18:1–8

    Google Scholar 

  • Kim D, Paggi JM, Park C, Bennett C, Salzberg SL (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37:907–915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koralewski TE, Krutovsky KV (2011) Evolution of exon-intron structure and alternative splicing. PLoS ONE 6:e18055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M (2019) Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol 20:1–13

    Google Scholar 

  • Kriechbaumer V, Wang P, Hawes C, Abell BM (2012) Alternative splicing of the auxin biosynthesis gene YUCCA4 determines its subcellular compartmentation. Plant J 70:292–302

    CAS  PubMed  Google Scholar 

  • Kundu A, Pal A (2012) Identification and characterization of elite inbred lines with MYMIV-resistance in Vigna mungo. Field Crop Res 135:116–125

    Google Scholar 

  • Kundu A, Patel A, Pal A (2013) Defining reference genes for qPCR normalization to study biotic and abiotic stress responses in Vigna mungo. Plant Cell Rep 32:1647–1658

    CAS  PubMed  Google Scholar 

  • Kundu A, Patel A, Paul S, Pal A (2015) Transcript dynamics at early stages of molecular interactions of MYMIV with resistant and susceptible genotypes of the leguminous host Vigna mungo. Plos One 10:e0124687

  • Kundu A, Singh PK, Dey A, Ganguli S, Pal A (2019) Complex molecular mechanisms underlying MYMIV-resistance in Vigna mungo revealed by comparative transcriptome profiling. Sci Rep 9:1–13

    Google Scholar 

  • Kundu A, Ganguli S, Pal A (2022) Genomic designing towards biotic stress resistance in mungbean and urdbean. Genomic designing for biotic stress resistant pulse crops. Springer, 381–414

  • Laloum T, Martín G, Duque P (2018) Alternative splicing control of abiotic stress responses. Trends Plant Sci 23:140–150

    CAS  PubMed  Google Scholar 

  • Li J, Li X, Guo L, Lu F, Feng X, He K, Wei L, Chen Z, Qu L-J, Gu H (2006) A subgroup of MYB transcription factor genes undergoes highly conserved alternative splicing in Arabidopsis and rice. J Exp Bot 57:1263–1273

    CAS  PubMed  Google Scholar 

  • Li W, Lin W-D, Ray P, Lan P, Schmidt W (2013) Genome-wide detection of condition-sensitive alternative splicing in Arabidopsis roots. Plant Physiol 162:1750–1763

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Chen X, Liang X, Zhou X, Yang F, Liu J, He SY, Guo Z (2016) Alternative splicing of rice WRKY62 and WRKY76 transcription factor genes in pathogen defense. Plant Physiol 171:1427–1442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Love M, Anders S, Huber W (2014) Differential analysis of count data–the DESeq2 package. Genome Biol 15:10–1186

    Google Scholar 

  • Mahadani P, Hazra A (2021) Expression and splicing dynamics of WRKY family genes along physiological exigencies of tea plant (Camellia sinensis). Biologia 76:2491–2499

    CAS  Google Scholar 

  • Mallick B, Kumari M, Pradhan S, Acharya G, Naresh P, Das B, Shashankar P (2022) Genome-wide analysis and characterization of heat shock transcription factors (Hsfs) in common bean (Phaseolus vulgaris L.). Funct Integr Genomics 22:743–756

    CAS  PubMed  Google Scholar 

  • Manu B, Biradar R, Sabale P, Kumar K, Aski MS, Mohite N, Shinde P, Kodandaram M, Singh A, Venkatesh M (2022) Genomic designing for abiotic stress tolerance in mungbean and urdbean. Genomic designing for abiotic stress resistant pulse crops. Springer, 271–343

  • Marquez Y, Brown JW, Simpson C, Barta A, Kalyna M (2012) Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res 22:1184–1195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martín G, Márquez Y, Mantica F, Duque P, Irimia M (2021) Alternative splicing landscapes in Arabidopsis thaliana across tissues and stress conditions highlight major functional differences with animals. Genome Biol 22:1–26

    Google Scholar 

  • Merino GA, Conesa A, Fernández EA (2019) A benchmarking of workflows for detecting differential splicing and differential expression at isoform level in human RNA-seq studies. Brief Bioinform 20:471–481

    CAS  PubMed  Google Scholar 

  • Metsalu T, Vilo J (2015) ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res 43:W566–W570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Middleton R, Gao D, Thomas A, Singh B, Au A, Wong JJ, Bomane A, Cosson B, Eyras E, Rasko JE (2017) IRFinder: assessing the impact of intron retention on mammalian gene expression. Genome Biol 18:1–11

    Google Scholar 

  • Muthusamy M, Yoon EK, Kim JA, Jeong M-J, Lee SI (2020) Brassica Rapa SR45a regulates drought tolerance via the alternative splicing of target genes. Genes 11:182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nawae W, Yundaeng C, Naktang C, Kongkachana W, Yoocha T, Sonthirod C, Narong N, Somta P, Laosatit K, Tangphatsornruang S (2020) The genome and transcriptome analysis of the Vigna mungo chloroplast. Plants 9:1247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson P, Mühlemann O (2010) Cutting the nonsense: the degradation of PTC-containing mRNAs. Biochem Soc Trans 38:1615–1620

    CAS  PubMed  Google Scholar 

  • Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463:457–463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ottens F, Gehring NH (2016) Physiological and pathophysiological role of nonsense-mediated mRNA decay. Pflügers Archiv-Eur J Physiol 468:1013–1028

    CAS  Google Scholar 

  • Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415

    CAS  PubMed  Google Scholar 

  • Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petrillo E, Godoy Herz MA, Barta A, Kalyna M, Kornblihtt AR (2014) Let there be light: regulation of gene expression in plants. RNA Biol 11:1215–1220

    PubMed  Google Scholar 

  • Pootakham W, Nawae W, Naktang C, Sonthirod C, Yoocha T, Kongkachana W, Sangsrakru D, Jomchai N, U-thoomporn S, Somta P (2021) A chromosome-scale assembly of the black gram (Vigna mungo) genome. Mol Ecol Resour 21:238–250

    CAS  PubMed  Google Scholar 

  • Raizada A, Souframanien J (2019) Transcriptome sequencing, de novo assembly, characterisation of wild accession of blackgram (Vigna mungo var. silvestris) as a rich resource for development of molecular markers and validation of SNPs by high resolution melting (HRM) analysis. BMC Plant Biol 19:1–16

    CAS  Google Scholar 

  • Rawoof A, Ahmad I, Islam K, Momo J, Kumar A, Jaiswal V, Ramchiary N (2022) Integrated omics analysis identified genes and their splice variants involved in fruit development and metabolites production in Capsicum species. Funct Integr Genomics 22:1189–1209

    CAS  PubMed  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing

  • Reddy AS (2007) Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu Rev Plant Biol 58:267–294

    CAS  PubMed  Google Scholar 

  • Reddy AS, Marquez Y, Kalyna M, Barta A (2013) Complexity of the alternative splicing landscape in plants. Plant Cell 25:3657–3683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Remy E, Cabrito TR, Baster P, Batista RA, Teixeira MC, Friml J, Sá-Correia I, Duque P (2013) A major facilitator superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in Arabidopsis. Plant Cell 25:901–926

    CAS  PubMed  PubMed Central  Google Scholar 

  • Risso D, Ngai J, Speed TP, Dudoit S (2014) Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol 32:896–902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez JM, Pozo F, Di Domenico T, Vazquez J, Tress ML (2020) An analysis of tissue-specific alternative splicing at the protein level. PLoS Comput Biol 16:e1008287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Satyawan D, Kim MY, Lee SH (2017) Stochastic alternative splicing is prevalent in mungbean (Vigna radiata). Plant Biotechnol J 15:174–182

    CAS  PubMed  Google Scholar 

  • Schindler S, Szafranski K, Hiller M, Ali GS, Palusa SG, Backofen R, Platzer M, Reddy AS (2008) Alternative splicing at NAGNAG acceptors in Arabidopsis thaliana SR and SR-related protein-coding genes. BMC Genomics 9:1–11

    Google Scholar 

  • Seo PJ, Park M-J, Park C-M (2013) Alternative splicing of transcription factors in plant responses to low temperature stress: mechanisms and functions. Planta 237:1415–1424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha R, Zimmer AD, Bolte K, Lang D, Reski R, Platzer M, Rensing SA, Backofen R (2010) Identification and characterization of NAGNAG alternative splicing in the moss Physcomitrella patens. BMC Plant Biol 10:1–14

    Google Scholar 

  • Soris P, Kala B, Mohan V, Vadivel V (2010) The biochemical composition and nutritional potential of three varieties of Vigna mungo (L.) Hepper. Advances in Bio Research 1:6–16

    Google Scholar 

  • Spitzer M, Wildenhain J, Rappsilber J, Tyers M (2014) BoxPlotR: a web tool for generation of box plots. Nat Methods 11:121–122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Staiger D, Brown JW (2013) Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell 25:3640–3656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Syed NH, Kalyna M, Marquez Y, Barta A, Brown JW (2012) Alternative splicing in plants–coming of age. Trends Plant Sci 17:616–623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taneri B, Snyder B, Novoradovsky A, Gaasterland T (2004) Alternative splicing of mouse transcription factors affects their DNA-binding domain architecture and is tissue specific. Genome Biol 5:1–9

    Google Scholar 

  • Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    CAS  PubMed  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Bel M, Silvestri F, Weitz EM, Kreft L, Botzki A, Coppens F, Vandepoele K (2021) PLAZA 5.0: extending the scope and power of comparative and functional genomics in plants. Nucleic Acids Research

  • Vitulo N, Forcato C, Carpinelli EC, Telatin A, Campagna D, D’Angelo M, Zimbello R, Corso M, Vannozzi A, Bonghi C (2014) A deep survey of alternative splicing in grape reveals changes in the splicing machinery related to tissue, stress condition and genotype. BMC Plant Biol 14:1–16

    Google Scholar 

  • Wang B-B, Brendel V (2006) Genomewide comparative analysis of alternative splicing in plants. Proc Natl Acad Sci 103:7175–7180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wang S, Li W (2012) RSeQC: quality control of RNA-seq experiments. Bioinformatics 28:2184–2185

    CAS  PubMed  Google Scholar 

  • Wang Y, Liu J, Huang B, Xu YM, Li J, Huang LF, Lin J, Zhang J, Min QH, Yang WM (2015) Mechanism of alternative splicing and its regulation. Biomedical Reports 3:152–158

    CAS  PubMed  Google Scholar 

  • Wang Z, Zhang H, Gong W (2019) Genome-wide identification and comparative analysis of alternative splicing across four legume species. Planta 249:1133–1142

    CAS  PubMed  Google Scholar 

  • Xing L, Peng K, Xue S, Yuan W, Zhu B, Zhao P, Wu H, Cheng Y, Fang M, Liu Z (2022) Genome-wide analysis of zinc finger-homeodomain (ZF-HD) transcription factors in diploid and tetraploid cotton. Functional & Integrative Genomics:1–13

  • Xu Y, Zeng A, Song L, Li J, Yan J (2019) Comparative transcriptomics analysis uncovers alternative splicing events and molecular markers in cabbage (Brassica oleracea L.). Planta 249:1599–1615

    CAS  PubMed  Google Scholar 

  • Yan X, Bai D, Song H, Lin K, Pang E (2021) Alternative splicing during fruit development among fleshy fruits. BMC Genomics 22:1–14

    Google Scholar 

  • Yarra R, Wei W (2021) The NAC-type transcription factor GmNAC20 improves cold, salinity tolerance, and lateral root formation in transgenic rice plants. Funct Integr Genomics 21:473–487

    CAS  PubMed  Google Scholar 

  • Ye LX, Wu YM, Zhang JX, Zhang JX, Zhou H, Zeng RF, Zheng WX, Qiu MQ, Zhou JJ, Xie ZZ (2023) A bZIP transcription factor (CiFD) regulates drought-and low-temperature-induced flowering by alternative splicing in citrus. J Integr Plant Biol 65:674–691

    CAS  PubMed  Google Scholar 

  • Yeo G, Holste D, Kreiman G, Burge CB (2004) Variation in alternative splicing across human tissues. Genome Biol 5:1–15

    Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2012) goseq: Gene Ontology testing for RNA-seq datasets. R Bioconductor 8:1–25

    Google Scholar 

  • Yu H, Li M, Sandhu J, Sun G, Schnable JC, Walia H, Xie W, Yu B, Mower JP, Zhang C (2022) Pervasive misannotation of microexons that are evolutionarily conserved and crucial for gene function in plants. Nat Commun 13:1–15

    Google Scholar 

  • Zhang J-Z, Li Z-M, Mei L, Yao J-L, Hu C-G (2009) PtFLC homolog from trifoliate orange (Poncirus trifoliata) is regulated by alternative splicing and experiences seasonal fluctuation in expression level. Planta 229:847–859

    CAS  PubMed  Google Scholar 

  • Zhang J, Li L, Huang L, Zhang M, Chen Z, Zheng Q, Zhao H, Chen X, Jiang M, Tan M (2019a) Maize NAC-domain retained splice variants act as dominant negatives to interfere with the full-length NAC counterparts. Plant Sci 289:110256

    CAS  PubMed  Google Scholar 

  • Zhang M, Liu Y-H, Chang C-S, Zhi H, Wang S, Xu W, Smith CW, Zhang H-B (2019b) Quantification of gene expression while taking into account RNA alternative splicing. Genomics 111:1517–1528

    CAS  PubMed  Google Scholar 

  • Zheng J, Liu F, Zhu C, Li X, Dai X, Yang B, Zou X, Ma Y (2019) Identification, expression, alternative splicing and functional analysis of pepper WRKY gene family in response to biotic and abiotic stresses. PLoS ONE 14:e0219775

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu D, Mao F, Tian Y, Lin X, Gu L, Gu H, Qu L-j, Wu Y, Wu Z (2020) The features and regulation of co-transcriptional splicing in Arabidopsis. Mol Plant 13:278–294

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, Bose Institute, Kolkata and Principal, RKMVC College, Rahara for providing all infrastructural facilities. We are grateful to the anonymous reviewers for helping us immensely to improve the quality of the manuscript.

Funding

The financial requirements were borne by the authors and no extra-mural funding was received from any source.

Author information

Authors and Affiliations

Authors

Contributions

AH: Conceptualization, methodology, data analysis, writing—original draft preparation. AP: Conceptualization, supervision, review and editing. AK: Conceptualization, supervision, writing—original draft preparation, review and editing. All the authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Amita Pal or Anirban Kundu.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazra, A., Pal, A. & Kundu, A. Alternative splicing shapes the transcriptome complexity in blackgram [Vigna mungo (L.) Hepper]. Funct Integr Genomics 23, 144 (2023). https://doi.org/10.1007/s10142-023-01066-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-023-01066-4

Keywords

Navigation