Skip to main content
Log in

Dietary supplementation with glutamate precursor α-ketoglutarate attenuates lipopolysaccharide-induced liver injury in young pigs

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

There is growing interest in glutamate as a functional amino acid in nutrition and health. This study was conducted to determine whether glutamate precursor α-ketoglutarate (AKG) could alleviate lipopolysaccharide (LPS)-induced liver injury in young pigs. Twenty-four piglets were randomly assigned to the control, LPS, or LPS + AKG group. Piglets in the control and LPS groups were fed a basal diet, whereas piglets in the NAC group were fed the basal diet supplemented with 1 % AKG. On days 10, 12, 14, and 16 of the trial, piglets in the LPS and LPS + AKG groups received intraperitoneal administration of LPS (80 μg/kg BW), whereas piglets in the control group received the same volume of saline. On day 16 of the trial, blood samples were collected 3 h after LPS or saline injection. Twenty-four hours post-administration of LPS or saline (on day 17 of the trial), piglets were killed to obtain liver for analysis. Dietary AKG supplementation alleviated LPS-induced histomorphological abnormalities and mitigated LPS-induced increases in aspartate aminotransferase (AST) activity and AST/ALT ratio (P < 0.05). Compared with the LPS group, dietary supplementation with AKG decreased plasma glutamate concentration, while increasing hepatic concentrations of glutamate, glutamine, leucine, asparagine, lysine, alanine, serine, threonine, valine, and phenylalanine (P < 0.05). LPS challenge dramatically increased concentrations of malondialdehyde and decreased glutathione peroxidase activity in the liver. Additionally, LPS challenge enhanced concentrations of AMP and total protein, as well as RNA/DNA and total protein/DNA ratios, while decreasing hepatic ADP concentrations. These adverse effects of LPS challenge were ameliorated by AKG supplementation. Collectively, dietary AKG supplementation provides a new means to ameliorate LPS-induced liver injury by increasing anti-oxidative capacity and improving energy metabolism in young pigs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AEC:

Adenylate energy charge

AKG:

α-Ketoglutarate

ADA:

Adenosine deaminase

ADP:

Adenosine diphosphate

ALT:

Alanine aminotransferase

AMP:

Adenosine monophosphate

AST:

Aspartate aminotransferase

ATP:

Adenosine triphosphate

BW:

Body weight

CAT:

Catalase

CHE:

Cholinesterase

GSH-Px:

Glutathione peroxidase

LPS:

Lipopolysaccharide

MDA:

Malondialdehyde

PBS:

Phosphate-buffered saline

SD:

Standard deviation

SOD:

Superoxide dismutase

TAN:

Total adenine nucleotide

References

  • Assaad H, Zhou L, Carroll RJ et al (2014a) Rapid publication-ready MS-Word tables for one-way ANOVA. Springerplus 3:474

    Article  PubMed Central  PubMed  Google Scholar 

  • Assaad H, Yao K, Tekwe CD et al (2014b) Analysis of energy expenditure in diet-induced obese rats. Front Biosci 19:967–985

    Article  Google Scholar 

  • Atkinson DE (1968) The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7:4030–4034

    Article  CAS  PubMed  Google Scholar 

  • Baker DH (2009) Advances in protein-amino acid nutrition of poultry. Amino Acids 37:29–41

    Article  CAS  PubMed  Google Scholar 

  • Bellezzo JM, Leingang KA, Bulla GA et al (1998) Modulation of lipopolysaccharide-mediated activation in rat Kupffer cells by antioxidants. J Lab Clin Med 121:36–74

    Article  Google Scholar 

  • Blachier F, Boutry C, Bos C et al (2009) Metabolism and functions of l-glutamate in the epithelial cells of the small and large intestines. Am J Clin Nutr 90:814S–821S

    Article  CAS  PubMed  Google Scholar 

  • Brosnan JT, Brosnan ME (2013) Glutamate: a truly functional amino acid. Amino Acids 45:413–418

    Article  CAS  PubMed  Google Scholar 

  • Burrin DG, Stoll B (2009) Metabolic fate and function of dietary glutamate in the gut. Am J Clin Nutr 90:850S–856S

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Liu YL, Zhu HL et al (2013) Fish oil attenuates liver injury caused by LPS in weaned pigs associated with inhibition of TLR4 and nucleotide-binding oligomerization domain protein signaling pathways. Innate Immun 19:504–515

    Article  PubMed  Google Scholar 

  • Chen G, Zhang J, Zhang YZ et al (2014a) Oral MSG administration alters hepatic expression of genes for lipid and nitrogen metabolism in suckling piglets. Amino Acids 46:245–250

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Liu SP, Zhang FM et al (2014b) Effects of dietary l-glutamine supplementation on specific and general defense responses in mice immunized with inactivated Pasteurella multocida vaccine. Amino Acids 46:2365–2375

    Article  CAS  PubMed  Google Scholar 

  • Dai ZL, Li XL, Xi PB et al (2013) l-Glutamine regulates amino acid utilization by intestinal bacteria. Amino Acids 45:501–512

    Article  CAS  PubMed  Google Scholar 

  • Dai ZL, Wu ZL, Jia SC et al (2014) Analysis of amino acid composition in proteins of animal tissues and foods as pre-column o-phthaldialdehyde derivatives by HPLC with fluorescence detection. J Chromatogr B 964:116–127

    Article  CAS  Google Scholar 

  • Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18:872–879

    Article  CAS  PubMed  Google Scholar 

  • Fasina YO, Moran ET, Ashwell CM et al (2007) Effect of dietary gelatin supplementation on the expression of selected enterocyte genes, intestinal development and early chick performance. Int J Poult Sci 6:944–951

    Article  Google Scholar 

  • Hardie DG (2003) Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 144:5179–5183

    Article  CAS  PubMed  Google Scholar 

  • He P, Noda Y, Sugiyama K (2001) Green tea suppresses lipopolysaccharide-induced liver injury in d-galactosamine sensitized rats. J Nutr 131:1560–1567

    CAS  PubMed  Google Scholar 

  • He LQ, Yang HS, Li TJ et al (2013) Effects of dietary l-lysine intake on the intestinal mucosa and expression of CAT genes in weaned piglets. Amino Acids 45:383–391

    Article  CAS  PubMed  Google Scholar 

  • Hou YQ, Wang L, Ding BY et al (2010) Dietary α-ketoglutarate supplementation ameliorates intestinal injury in lipopolysaccharide-challenged piglets. Amino Acids 39:555–564

    Article  CAS  PubMed  Google Scholar 

  • Hou YQ, Wang L, Ding BY et al (2011a) α-Ketoglutarate and intestinal function. Front Biosci 16:1186–1196

    Article  CAS  Google Scholar 

  • Hou YQ, Yao K, Wang L et al (2011b) Effects of α-ketoglutarate on energy status in the intestinal mucosa of weaned piglets chronically challenged with lipopolysaccharide. Br J Nutr 106:357–363

    Article  CAS  PubMed  Google Scholar 

  • Hou YQ, Wang L, Zhang W et al (2012) Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide. Amino Acids 43:1233–1242

    Article  CAS  PubMed  Google Scholar 

  • Hou YQ, Wang L, Yi D et al (2013) N-acetylcysteine reduces inflammation in the small intestine by regulating redox, EGF and TLR4 signaling. Amino Acids 45:513–522

    Article  CAS  PubMed  Google Scholar 

  • Hou YQ, Wang L, Yi D et al (2015) N-acetylcysteine and intestinal health: a focus on its mechanism of action. Front Biosci 20:872–891

    Article  Google Scholar 

  • Jepson MM, Pell JM, Bates PC et al (1986) The effects of endotoxameia on protein metabolism in skeletal muscle and liver of fed and fasted rats. Biochem J 235:329–336

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jirillo E, Caccavo D, Magrone T et al (2002) The role of the liver in the response to LPS: experimental and clinical findings. J Endotoxin Res 8:319–327

    CAS  PubMed  Google Scholar 

  • Junghans P, Derno M, Pierzynowski S et al (2006) Intraduodenal infusion of α-ketoglutarate decreases whole body energy expenditure in growing pigs. Clin Nutr 25:489–496

    Article  CAS  PubMed  Google Scholar 

  • Kang MJ, Kim JI (2013) Protective effect of Hedyotis diffusa on lipopolysaccharide (LPS)-induced liver damage. FASEB J 27(1155):5

    Google Scholar 

  • Kristensen NB, Jungvid H, Fernández JA et al (2002) Absorption and metabolism of α-ketoglutarate in growing pigs. J Anim Physiol Anim Nutr 86:239–245

    Article  CAS  Google Scholar 

  • Lambert BD, Stoll B, Niinikoski H et al (2002) Net portal absorption of enterally fed α-ketoglutarate is limited in young pigs. J Nutr 132:3383–3386

    CAS  PubMed  Google Scholar 

  • Lambert BD, Filip R, Stoll B et al (2006) First-pass metabolism limits the intestinal absorption of enteral α-ketoglutarate in young pigs. J Nutr 136:2779–2784

    CAS  PubMed  Google Scholar 

  • Lancaster JR Jr, Laster SM, Gooding LR (1989) Inhibition of target cell mitochondrial electron transfer by tumor necrosis factor. FEBS Lett 248:169–174

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Liu YL, Che ZQ et al (2012) Dietary l-arginine supplementation alleviates liver injury caused by Escherichia coli LPS in weaned pigs. Innate Immun 18:804–814

    Article  PubMed  Google Scholar 

  • Lin WT, Yang SC, Tsai SC et al (2006) l-Arginine attenuates xanthine oxidase and myeloperoxidase activities in hearts of rats during exhaustive exercise. Br J Nutr 95:67–75

    Article  CAS  PubMed  Google Scholar 

  • Liu YL, Huang JJ, Hou YQ et al (2008) Dietary arginine supplementation alleviates intestinal mucosal disruption induced by Escherichia coli lipopolysaccharide in weaned pigs. Br J Nutr 100:552–560

    Article  CAS  PubMed  Google Scholar 

  • Liu YL, Han J, Huang JJ et al (2009) Dietary l-arginine supplementation improves intestinal function in weaned pigs after an Escherichia coli lipopolysaccharide challenge. Asian Aust J Anim Sci 22:1667–1675

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Matsuzaki J, Kuwamura M, Yamaji R et al (2001) Inflammatory responses to lipopolysaccharide are suppressed in 40 % energy-restricted mice. J Nutr 131:2139–2144

    CAS  PubMed  Google Scholar 

  • McKnight JR, Satterfield MC, Jobgen WS et al (2010) Beneficial effects of l-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids 39:349–357

    Article  CAS  PubMed  Google Scholar 

  • Menguy R (1981) Role of gastric mucosal energy metabolism in the etiology of stress ulceration. World J Surg 5:175–180

    Article  CAS  PubMed  Google Scholar 

  • Munro HN, Fleck A (1969) Analysis of tissues and body fluids for nitrogenous constituents. In: Munro HN (ed) Mammalian protein metabolism. Academic press, New York, pp 465–483

    Google Scholar 

  • Nolan JP (1975) The role of endotoxin in liver injury. Gastroenterology 69:1346–1356

    CAS  PubMed  Google Scholar 

  • Nyblom H, Berggren U, Balldin J et al (2004) High AST/ALT ratio may indicate advanced alcoholic liver disease rather than heavy drinking. Alcohol Alcohol 39:336–339

    Article  CAS  PubMed  Google Scholar 

  • Pierzynowski SG, Sjodin A (1998) Perspectives of glutamine and its derivatives as feed additives for farm animals. J Anim Feed Sci 7:79–91

    Google Scholar 

  • Prasad AS, DeMouchelle E, Koniuchi D (1972) A simple fluorimetric method for the determination of RNA and DNA in tissue. J Lab Clin Med 80:598–601

    CAS  PubMed  Google Scholar 

  • Raina N, Matsui J, Jeejeebhoy KN (2000) Nutritional and metabolic effects of the endotoxin bacterial lipopolysaccharide in orally and parenterally fed rats. Am J Clin Nutr 71:835–843

    CAS  PubMed  Google Scholar 

  • Ren WK, Chen S, Yin J et al (2014a) Dietary arginine supplementation of mice alters the microbial population and activates intestinal innate immunity. J Nutr 144:988–995

    Article  CAS  PubMed  Google Scholar 

  • Ren WK, Duan JL, Yin J et al (2014b) Dietary l-glutamine supplementation modulates microbial community and activates innate immunity in the mouse intestine. Amino Acids 46:2403–2413

    Article  CAS  PubMed  Google Scholar 

  • Rezaei R, Knabe DA, Tekwe CD et al (2013a) Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs. Amino Acids 44:911–923

    Article  CAS  PubMed  Google Scholar 

  • Rezaei R, Wang WW, Wu ZL et al (2013b) Biochemical and physiological bases for utilization of dietary amino acids by young pigs. J Anim Sci Biotechnol 4:7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • San Gabriel A, Uneyama H (2013) Amino acid sensing in the gastrointestinal tract. Amino Acids 45:451–461

    Article  CAS  PubMed  Google Scholar 

  • Su GL (2002) Lipopolysaccharides in liver injury: molecular mechanisms of Kupffer cell activation. Am J Physiol Gastrointest Liver Physiol 283:G256–G265

    Article  CAS  PubMed  Google Scholar 

  • Sugino K, Dohi K, Yamada K et al (1987) The role of lipid peroxidation in endotoxin-induced hepatic damage and the protective effect of antioxidants. Surgery 101:746–752

    CAS  PubMed  Google Scholar 

  • Suryawan A, Nguyen HV, Almonaci RD et al (2013) Abundance of amino acid transporters involved in mTORC1 activation in skeletal muscle of neonatal pigs is developmentally regulated. Amino Acids 45:523–530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang QJ, Hou YQ, Yi D et al (2013) Protective effects of N-acetylcysteine on alleviating acetic acid-induced colitis in a porcine model. BMC Gastroenterol 13(1):133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang WW, Dai ZL, Wu ZL et al (2014) Glycine is a nutritionally essential amino acid for maximal growth of milk-fed young pigs. Amino Acids 46:2037–2045

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Hou YQ, Yi D et al (2015) Dietary oleum cinnamomi alleviates intestinal injury. Front Biosci 20:814–828

    Article  Google Scholar 

  • Williams NH, Stahly TS, Zimmerman DR (1997) Effect of chronic immune system activation on the rate, efficiency, and composition of growth and lysine needs of pigs fed from 6 to 27 kg. J Anim Sci 75:2463–2471

    CAS  PubMed  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  Google Scholar 

  • Wu G (2010) Functional amino acids in growth, reproduction and health. Adv Nutr 1:31–37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu G (2013) Functional amino acids in nutrition and health. Amino Acids 45:407–411

    Article  CAS  PubMed  Google Scholar 

  • Wu G (2014) Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. J Anim Sci Biotechnol 5:34

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu G, Meininger CJ (2008) Analysis of citrulline, arginine, and methylarginines using high-performance liquid chromatography. Methods Enzymol 440:177–189

    CAS  PubMed  Google Scholar 

  • Wu G, Wu ZL, Dai ZL et al (2013) Dietary requirements of “nutritionally nonessential amino acids” by animals and humans. Amino Acids 44:1107–1113

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Dai ZL et al (2014) Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci 2:387–417

    Article  CAS  PubMed  Google Scholar 

  • Yao K, Yin YL, Li XL et al (2012) α-Ketoglutarate inhibits glutamine degradation and enhances protein synthesis in intestinal porcine epithelial cells. Amino Acids 42:2491–2500

    Article  CAS  PubMed  Google Scholar 

  • Yi D, Hou YQ, Wang L et al (2014) Dietary N-acetylcysteine supplementation alleviates liver injury in lipopolysaccharide-challenged piglets. Br J Nutr 111:46–54

    Article  CAS  PubMed  Google Scholar 

  • Yu BP (1994) Cellular defenses against damage from reactive oxygen species. Physiol Rev 74:139–162

    CAS  PubMed  Google Scholar 

  • Zafarullah M, Li WQ, Sylvester J et al (2003) Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci 60:6–20

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Yin YL, Shu X et al (2013) Oral administration of MSG increases expression of glutamate receptors and transporters in the gastrointestinal tract of young piglets. Amino Acids 45:1169–1177

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was jointly supported by National Basic Research Program of China (No. 2012CB126305), National Natural Science Foundation of China (No. 31372319, 31402084), the Hubei Provincial Key Project for Scientific and Technical Innovation (2014ABA022), Hubei Provincial Research and Development Program (No. 2010BB023), Natural Science Foundation of Hubei Province (No. 2013CFA097, 2013CFB325, 2012FFB04805, 2011CDA131), Scientific Research Program of Hubei Provincial Department of Education (D20141701), the Hubei Hundred Talent Program, Agriculture and Food Research Initiative Competitive Grants of (2014-67015-21770) of the USDA National Institute of Food and Agriculture, and Texas AgriLife Research (H-82000). All these funding agencies had no role in the design, analysis or writing of our published studies.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

The use of animals for this research was approved by the Animal Care and Use Committee of Hubei Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqing Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Hou, Y., Yi, D. et al. Dietary supplementation with glutamate precursor α-ketoglutarate attenuates lipopolysaccharide-induced liver injury in young pigs. Amino Acids 47, 1309–1318 (2015). https://doi.org/10.1007/s00726-015-1966-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-1966-5

Keywords

Navigation