Skip to main content

Advertisement

Log in

Ordering genetic testing by neurologists: points to consider

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

A significant challenge limiting the comprehensive utilization of genomic medicine is the lack of timely access to genetics specialists. Although neurologists see patients for whom genetic testing should be considered, the knowledge regarding the choice of the optimal genetic test for each case and the management of the test results are out of the scope of their everyday practice. In this review, we provide a step-by-step guide for non-geneticist physicians through the decision-making process when ordering diagnostic genetic testing for monogenic neurological diseases and when dealing with their results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shields AE, Burke W, Levy DE (2008) Differential use of available genetic tests among primary care physicians in the United States: results of a national survey. Genet Med 10(6):404–414. https://doi.org/10.1097/GIM.0b013e3181770184

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mancuso M, Houlden H, Molnar MJ et al (2022) How to approach a neurogenetics diagnosis in different European countries: the European Academy of Neurology Neurogenetics Panel survey. Eur J Neurol 29(7):1885–1891. https://doi.org/10.1111/ene.15320

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bradley L, Lynch SA (2021) Dying to see you? Deaths on a clinical genetics waiting list in the Republic of Ireland; what are the consequences? J Community Genet 12(1):121–127. https://doi.org/10.1007/s12687-020-00491-3

    Article  PubMed  Google Scholar 

  4. Shaw T, Metras J, Ting ZAL, Courtney E, Li ST, Ngeow J (2018) Impact of appointment waiting time on attendance rates at a clinical cancer genetics service. J Genet Couns 27(6):1473–1481. https://doi.org/10.1007/s10897-018-0259-z

    Article  PubMed  Google Scholar 

  5. Maiese DR, Keehn A, Lyon M, Flannery D, Watson M, Working groups of the national coordinating center for seven regional genetics service collaboratives (2019) Current conditions in medical genetics practice. Genet Med 21(8):1874–1877. https://doi.org/10.1038/s41436-018-0417-6

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kotzer KE, Riley JD, Conta JH, Anderson CM, Schahl KA, Goodenberger ML (2014) Genetic testing utilization and the role of the laboratory genetic counselor. Clin Chim Acta 427:193–195. https://doi.org/10.1016/j.cca.2013.09.033

    Article  CAS  PubMed  Google Scholar 

  7. Miller CE, Krautscheid P, Baldwin EE et al (2014) Genetic counselor review of genetic test orders in a reference laboratory reduces unnecessary testing. Am J Med Genet A 164A(5):1094–1101. https://doi.org/10.1002/ajmg.a.36453

    Article  PubMed  Google Scholar 

  8. Sandhaus LM, Singer ME, Dawson NV, Wiesner GL (2001) Reporting BRCA test results to primary care physicians. Genet Med 3(5):327–334. https://doi.org/10.1097/00125817-200109000-00001

    Article  CAS  PubMed  Google Scholar 

  9. McGovern MM, Benach M, Zinberg R (2003) Interaction of genetic counselors with molecular genetic testing laboratories: implications for non-geneticist health care providers. Am J Med Genet 119A(3):297–301. https://doi.org/10.1002/ajmg.a.20196

    Article  PubMed  Google Scholar 

  10. Lalonde E, Rentas S, Lin F, Dulik MC, Skraban CM, Spinner NB (2020) Genomic diagnosis for pediatric disorders: revolution and evolution. Front Pediatr 8:373. https://doi.org/10.3389/fped.2020.00373

    Article  PubMed  PubMed Central  Google Scholar 

  11. Feldman EL, Goutman SA, Petri S et al (2022) Amyotrophic lateral sclerosis. Lancet 400(10360):1363–1380. https://doi.org/10.1016/S0140-6736(22)01272-7

    Article  CAS  PubMed  Google Scholar 

  12. Guo MH, Bardakjian TM, Brzozowski MR et al (2021) Temporal trends and yield of clinical diagnostic genetic testing in adult neurology. Am J Med Genet A 185(10):2922–2928. https://doi.org/10.1002/ajmg.a.62372

    Article  PubMed  Google Scholar 

  13. Thomas Q, Vitobello A, Tran Mau-Them F et al (2022) High efficiency and clinical relevance of exome sequencing in the daily practice of neurogenetics. J Med Genet 59(5):445–452. https://doi.org/10.1136/jmedgenet-2020-107369

    Article  CAS  PubMed  Google Scholar 

  14. Wright CF, FitzPatrick DR, Firth HV (2018) Paediatric genomics: diagnosing rare disease in children. Nat Rev Genet 19(5):253–268. https://doi.org/10.1038/nrg.2017.116

    Article  CAS  PubMed  Google Scholar 

  15. Xue Y, Ankala A, Wilcox WR, Hegde MR (2015) Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet Med 17(6):444–451. https://doi.org/10.1038/gim.2014.122

    Article  CAS  PubMed  Google Scholar 

  16. Stevanovski I, Chintalaphani SR, Gammarachchi H et al (2022) Comprehensive genetic diagnosis of tandem repeat expansion disorders with programmable targeted nanopore sequencing. Sci Adv 8(9):eabm5386. https://doi.org/10.1126/sciadv.abm5386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dillon OJ, Lunke S, Stark Z et al (2018) Exome sequencing has higher diagnostic yield compared to simulated disease-specific panels in children with suspected monogenic disorders. Eur J Hum Genet 26(5):644–651. https://doi.org/10.1038/s41431-018-0099-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Truty R, Rojahn S, Quyang K et al (2023) Patterns of mosaicism for sequence and copy-number variants discovered through clinical deep sequencing of disease-related genes in one million individuals. Am J Hum Genet 110(4):551–564. https://doi.org/10.1016/j.ajhg.2023.02.013

    Article  CAS  PubMed  Google Scholar 

  19. Saudi Mendeliome Group (2015) Comprehensive gene panels provide advantages over clinical exome sequencing for Mendelian diseases. Genome Biol 16(1):134. https://doi.org/10.1186/s13059-015-0693-2

    Article  CAS  PubMed Central  Google Scholar 

  20. Sawyer SL, Hartley T, Dyment DA et al (2016) Utility of whole-exome sequencing for those near the end of the diagnostic odyssey: time to address gaps in care. Clin Genet 89(3):275–284. https://doi.org/10.1111/cge.12654

    Article  CAS  PubMed  Google Scholar 

  21. Wang X, Shen X, Fang F et al (2019) Phenotype-driven virtual panel is an effective method to analyze WES data of neurological disease. Front Pharmacol 9:1529. https://doi.org/10.3389/fphar.2018.01529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lionel AC, Costain G, Monfared N et al (2018) Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genet Med 20(4):435–443. https://doi.org/10.1038/gim.2017.119

    Article  CAS  PubMed  Google Scholar 

  23. Wenger AM, Guturu H, Bernstein JA, Bejerano G (2017) Systematic reanalysis of clinical exome data yields additional diagnoses: implications for providers. Genet Med 19(2):209–214. https://doi.org/10.1038/gim.2016.88

    Article  PubMed  Google Scholar 

  24. Basel-Salmon L, Orenstein N, Markus-Bustani K et al (2019) Improved diagnostics by exome sequencing following raw data reevaluation by clinical geneticists involved in the medical care of individuals tested. Genet Med 21(6):1443–1451. https://doi.org/10.1038/s41436-018-0343-7

    Article  PubMed  Google Scholar 

  25. Basel-Salmon L, Ruhrman-Shahar N, Orenstein N et al (2021) When phenotype does not match genotype: importance of “real-time” refining of phenotypic information for exome data interpretation. Genet Med 23(1):215–221. https://doi.org/10.1038/s41436-020-00938-5

    Article  CAS  PubMed  Google Scholar 

  26. Meng L, Attali R, Talmy T et al (2023) Evaluation of an automated genome interpretation model for rare disease routinely used in a clinical genetic laboratory. Genet Med 25(6):100830. https://doi.org/10.1016/j.gim.2023.100830

    Article  CAS  PubMed  Google Scholar 

  27. Tan TY, Lunke S, Chong B et al (2019) A head-to-head evaluation of the diagnostic efficacy and costs of trio versus singleton exome sequencing analysis. Eur J Hum Genet 27(12):1791–1799. https://doi.org/10.1038/s41431-019-0471-9

    Article  PubMed  PubMed Central  Google Scholar 

  28. Retterer K, Juusola J, Cho MT et al (2016) Clinical application of whole-exome sequencing across clinical indications. Genet Med 18(7):696–704. https://doi.org/10.1038/gim.2015.148

    Article  CAS  PubMed  Google Scholar 

  29. Kalia SS, Adelman K, Bale SJ et al (2017) Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med 19(2):249–255. https://doi.org/10.1038/gim.2016.190

    Article  PubMed  Google Scholar 

  30. Miller DT, Lee K, Abul-Husn NS et al (2022) ACMG SF v3.1 list for reporting for secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med 24(7):1407–1414. https://doi.org/10.1016/j.gim.2022.04.006

    Article  CAS  PubMed  Google Scholar 

  31. Fridman H, Behar DM, Carmi S, Levy-Lahad E (2020) Preconception carrier screening yield: effect of variants of unknown significance in partners of carriers with clinically significant variants. Genet Med 22(3):646–653. https://doi.org/10.1038/s41436-019-0676-x

    Article  CAS  PubMed  Google Scholar 

  32. Liu P, Meng L, Normand EA et al (2019) Reanalysis of clinical exome sequencing data. N Engl J Med 380(25):2478–2480. https://doi.org/10.1056/NEJMc1812033

    Article  PubMed  PubMed Central  Google Scholar 

  33. Godino L, Turchetti D, Jackson L, Hennessy C, Skirton H (2016) Impact of presymptomatic genetic testing on young adults: a systematic review. Eur J Hum Genet 24(4):496–503. https://doi.org/10.1038/ejhg.2015.153

    Article  PubMed  Google Scholar 

  34. Veras DF, Ayres S, Boyle J, Mansour J, Newson AJ, on behalf of the Education, Ethics and Social Issues Committee of the Human Genetics Society of Australasia (2020) Human Genetics Society of Australasia position statement: Predictive and presymptomatic genetic testing in adults and children. Twin Res Hum Genet 23(3):184–189. https://doi.org/10.1017/thg.2020.51

    Article  Google Scholar 

  35. Guttmacher AE, Porteous ME, McInerney JD (2007) Educating health-care professionals about genetics and genomics. Nat Rev Genet 8(2):151–157. https://doi.org/10.1038/nrg2007

    Article  CAS  PubMed  Google Scholar��

  36. Michaelson-Cohen R, Salzer-Sheelo L, Sukenik-Halevy R et al (2020) Teaching clinicians practical genomic medicine: 7 years’ experience in a tertiary care center. Genet Med 22(10):1703–1709. https://doi.org/10.1038/s41436-020-0868-4

    Article  PubMed  Google Scholar 

  37. Stoll K, Kubendran S, Cohen SA (2018) The past, present and future of service delivery in genetic counseling: keeping up in the era of precision medicine. Am J Med Genet C Semin Med Genet 178(1):24–37. https://doi.org/10.1002/ajmg.c.31602

    Article  PubMed  Google Scholar 

  38. Recchia G, Chiappi A, Chandratillake G, Raymond L, Freeman ALJ (2020) Creating genetic reports that are understood by nonspecialists: a case study. Genet Med 22(2):353–361. https://doi.org/10.1038/s41436-019-0649-0

    Article  PubMed  Google Scholar 

  39. Farmer GD, Gray H, Chandratillake G, Raymond FL, Freeman ALJ (2020) Recommendations for designing genetic test reports to be understood by patients and non-specialists. Eur J Hum Genet 28(7):885–895. https://doi.org/10.1038/s41431-020-0579-y

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avi Fellner.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest. The authors have no competing interests to declare that are relevant to the content of this article.

Ethical standard

This manuscript does not contain a clinical study or patient data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fellner, A., Goldberg, Y. & Basel-Salmon, L. Ordering genetic testing by neurologists: points to consider. J Neurol 270, 3714–3722 (2023). https://doi.org/10.1007/s00415-023-11758-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-023-11758-3

Keywords

Navigation