Skip to main content
Log in

Drying of pendant drops of blood

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The analysis of patterns in dried blood droplets has made it possible to generate strategies to detect health problems in patients and to address problems in forensic sciences. Therefore, studying various forms of droplet drying could enhance the efficiency of pathology diagnosis and the comprehension of crime scenes. In this paper, we report the study of the pattern formation generated by drying pendant blood droplets with different initial volumes (V = 3–24 \({\mu L}\)). We find two distinct groups of deposits: dried drops with radial symmetry (Group I) and dried drops with lateral deposition of blood serum (Group II). Lateral deposition arises from drop collapse induced by hematocrit agglomeration at the drop apex. Our findings reveal that the collapse process consistently takes place at an angle 11 degrees below the initial contact angle, irrespective of the initial droplet volume. Finally, we provide evidence that the mass contained in a droplet promotes the occurrence of the unstable drying mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Carreón YJ, Díaz-Hernández O, Escalera Santos GJ, Cipriano-Urbano I, Solorio-Ordaz FJ, González-Gutiérrez J, Zenit R (2021) Texture analysis of dried droplets for the quality control of medicines. Sensors 21(12):4048

    Article  PubMed  PubMed Central  Google Scholar 

  2. Carreón YJ, Gómez-López ML, Díaz-Hernández O, Vazquez-Vergara P, Moctezuma RE, Saniger JM, González-Gutiérrez J (2022) Patterns in dried droplets to detect unfolded BSA. Sensors 22(3):1156

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ríos-Ramírez M, Reyes-Figueroa A, Ruiz-Suárez J, González-Gutiérrez J (2018) Pattern formation of stains from dried drops to identify spermatozoa motility. Colloids Surf B 169:486–493

    Article  Google Scholar 

  4. Wang F, Gallardo V, Michielsen S, Fang T (2021) Fundamental study of porcine drip bloodstains on fabrics: blood droplet impact and wicking dynamics. Forensic Sci Int 318:110614

    Article  PubMed  Google Scholar 

  5. Smith F, Nicloux C, Brutin D (2020) A new forensic tool to date human blood pools. Sci Rep 10(1):1–12

    CAS  Google Scholar 

  6. Parsa M, Harmand S, Sefiane K (2018) Mechanisms of pattern formation from dried sessile drops. Adv Coll Interface Sci 254:22–47

    Article  CAS  Google Scholar 

  7. Mampallil D, Eral HB (2018) A review on suppression and utilization of the coffee-ring effect. Adv Coll Interface Sci 252:38–54

    Article  CAS  Google Scholar 

  8. Deegan RD (2000) Pattern formation in drying drops. Phys Rev E 61(1):475

    Article  CAS  Google Scholar 

  9. Girard F, Antoni M, Faure S, Steinchen A (2006) Evaporation and Marangoni driven convection in small heated water droplets. Langmuir 22(26):11085–11091

    Article  CAS  PubMed  Google Scholar 

  10. Pal A, Gope A, Sengupta A (2023) Drying of bio-colloidal sessile droplets: advances, applications, and perspectives. Adv Colloid Interf Sci 102870

  11. Kumar PL, Thampi SP, Basavaraj MG (2021) Patterns from drops drying on inclined substrates. Soft Matter 17(33):7670–7681

    Article  Google Scholar 

  12. Parsa M, Askounis A (2023) Inclined colloidal drops: evaporation kinetics and pattern formation. Frontiers in Mechanical Engineering 9:1086544

    Article  Google Scholar 

  13. Hampton MA, Nguyen TA, Nguyen AV, Xu ZP, Huang L, Rudolph V (2012) Influence of surface orientation on the organization of nanoparticles in drying nanofluid droplets. J Colloid Interface Sci 377(1):456–462

    Article  CAS  PubMed  Google Scholar 

  14. Mondal R, Semwal S, Kumar PL, Thampi SP, Basavaraj MG (2018) Patterns in drying drops dictated by curvature-driven particle transport. Langmuir 34(38):11473–11483

    Article  CAS  PubMed  Google Scholar 

  15. Hodges CS, Tangparitkul SM (2019) Comment on “patterns in drying drops dictated by curvature-driven particle transport’’. Langmuir 35(30):9988–9990

    Article  CAS  PubMed  Google Scholar 

  16. Li W, Ji W, Sun H, Lan D, Wang Y (2018) Pattern formation in drying sessile and pendant droplet: interactions of gravity settling, interface shrinkage, and capillary flow. Langmuir 35(1):113–119

    Article  PubMed  Google Scholar 

  17. Sadek C, Tabuteau H, Schuck P, Fallourd Y, Pradeau N, Le Floch-Fouere C, Jeantet R (2013) Shape, shell, and vacuole formation during the drying of a single concentrated whey protein droplet. Langmuir 29(50):15606–15613

    Article  CAS  PubMed  Google Scholar 

  18. Chen R, Zhang L, Zang D, Shen W (2016) Blood drop patterns: formation and applications. Adv Coll Interface Sci 231:1–14

    Article  CAS  Google Scholar 

  19. Wang Y, Liu F, Yang Y, Xu L-P (2021) Droplet evaporation-induced analyte concentration toward sensitive biosensing. Materials Chemistry Frontiers 5(15):5639–5652

    Article  CAS  Google Scholar 

  20. Mukhopadhyay M, Ray R, Ayushman M, Sood P, Bhattacharyya M, Sarkar D, DasGupta S (2020) Interfacial energy driven distinctive pattern formation during the drying of blood droplets. J Colloid Interface Sci 573:307–316

    Article  CAS  PubMed  Google Scholar 

  21. Cameron JM, Butler HJ, Palmer DS, Baker MJ (2018) Biofluid spectroscopic disease diagnostics: a review on the processes and spectral impact of drying. J Biophotonics 11(4):201700299

    Article  Google Scholar 

  22. Bahmani L, Neysari M, Maleki M (2017) The study of drying and pattern formation of whole human blood drops and the effect of thalassaemia and neonatal jaundice on the patterns. Colloids Surf, A 513:66–75

    Article  CAS  Google Scholar 

  23. Brutin D, Sobac B, Loquet B, Sampol J (2011) Pattern formation in drying drops of blood. J Fluid Mech 667:85–95

    Article  CAS  Google Scholar 

  24. Peschel O, Kunz S, Rothschild M, Mützel E (2011) Blood stain pattern analysis. Forensic Sci Med Pathol 7:257–270

    Article  CAS  PubMed  Google Scholar 

  25. Ramsthaler F, Schlote J, Wagner C, Fiscina J, Kettner M (2016) The ring phenomenon of diluted blood droplets. Int J Legal Med 130(3):731–736

    Article  PubMed  Google Scholar 

  26. Chen R, Zhang L, Shen W (2018) Controlling the contact angle of biological sessile drops for study of their desiccated cracking patterns. J Mater Chem B 6(37):5867–5875

    Article  CAS  PubMed  Google Scholar 

  27. Sobac B, Brutin D (2014) Desiccation of a sessile drop of blood: cracks, folds formation and delamination. Colloids Surf, A 448:34–44

    Article  CAS  Google Scholar 

  28. Brutin D, Sobac B, Nicloux C (2012) Influence of substrate nature on the evaporation of a sessile drop of blood. J Heat Transf 134(6)

  29. Pal A, Gope A, Iannacchione G (2021) Temperature and concentration dependence of human whole blood and protein drying droplets. Biomolecules 11(2):231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pal A, Gope A, Obayemi JD, Iannacchione GS (2020) Concentration-driven phase transition and self-assembly in drying droplets of diluting whole blood. Sci Rep 10(1):1–12

    Article  Google Scholar 

  31. Zeid WB, Brutin D (2013) Influence of relative humidity on spreading, pattern formation and adhesion of a drying drop of whole blood. Colloids Surf, A 430:1–7

    Article  Google Scholar 

  32. Bou-Zeid W, Brutin D (2014) Effect of relative humidity on the spreading dynamics of sessile drops of blood. Colloids Surf, A 456:273–285

    Article  CAS  Google Scholar 

  33. Iqbal R, Shen AQ, Sen A (2020) Understanding of the role of dilution on evaporative deposition patterns of blood droplets over hydrophilic and hydrophobic substrates. J Colloid Interface Sci 579:541–550

    Article  CAS  PubMed  Google Scholar 

  34. González-Gutiérrez J, Pérez-Isidoro R, Ruiz-Suárez J (2017) A technique based on droplet evaporation to recognize alcoholic drinks. Rev Sci Instrum 88(7):074101

    Article  PubMed  Google Scholar 

  35. Zhang J, Cheng T, Cheng P, Chao J (2003) Relationship between the molecular structures of lubricants and their performance at the head-disk interface of hard disk drives. Wear 254(3–4):321–331

    Article  CAS  Google Scholar 

  36. Chao TC, Trybala A, Starov V, Das DB (2014) Influence of haematocrit level on the kinetics of blood spreading on thin porous medium during dried blood spot sampling. Colloids Surf, A 451:38–47

    Article  CAS  Google Scholar 

  37. Winhard BF, Haugg S, Blick R, Schneider GA, Furlan KP (2021) Direct writing of colloidal suspensions onto inclined surfaces: optimizing dispense volume for homogeneous structures. J Colloid Interface Sci 597:137–148

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.H.S. and Y.J.P.C. wish to acknowledge financial support by the CONACyT fellowship. R.H.S. wishes to acknowledge technical support by ECOn BG. We are sincerely grateful to CONACyT for their generous support under grant CF-2023-G-454.

Author information

Authors and Affiliations

Authors

Contributions

Investigation: Y.J.P.C., methodology: R.H.S. and Y.J.P.C., formal analysis: R.H.S. and O.D.H., conceptualization, supervision, writing original draft: J.G.G. Review and editing, R.H.S., Y.J.P.C., and O.D.H. All authors approved the manuscript.

Corresponding author

Correspondence to Jorge González-Gutiérrez.

Ethics declarations

Ethical approval

All subjects gave their informed consent for inclusion before they participated in the study. The study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the Internal Ethics Committee of Collegiate Research Group Dynamical Systems and Complexity and the Autonomous University of Chiapas (01/FYM/RPR/016/23).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrera-Sandoval, R., Carreón, Y.J.P., Díaz-Hernández, O. et al. Drying of pendant drops of blood. Colloid Polym Sci 301, 1325–1336 (2023). https://doi.org/10.1007/s00396-023-05155-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05155-5

Keywords

Navigation