Skip to main content
Log in

Pancreatic lipase-related protein 2 is selectively expressed by peritubular myoid cells in the murine testis and sustains long-term spermatogenesis

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Spermatogenesis is a complicated process of germ cell differentiation that occurs within the seminiferous tubule in the testis. Peritubular myoid cells (PTMCs) produce major components of the basement membrane that separates and ensures the structural integrity of seminiferous tubules. These cells secrete niche factors to promote spermatogonial stem cell (SSC) maintenance and mediate androgen signals to direct spermatid development. However, the regulatory mechanisms underlying the identity and function of PTMCs have not been fully elucidated. In the present study, we showed that the expression of pancreatic lipase-related protein 2 (Pnliprp2) was restricted in PTMCs in the testis and that its genetic ablation caused age-dependent defects in spermatogenesis. The fertility of Pnliprp2 knockout animals (Pnliprp2−/−) was normal at a young age but declined sharply beginning at 9 months. Pnliprp2 deletion impaired the homeostasis of undifferentiated spermatogonia and severely disrupted the development and function of spermatids. Integrated analyses of single-cell RNA-seq and metabolomics data revealed that glyceride metabolism was changed in PTMCs from Pnliprp2−/− mice. Further analysis found that 60 metabolites were altered in the sperm of the Pnliprp2−/− animals; notably, lipid metabolism was significantly dysregulated. Collectively, these results revealed that Pnliprp2 was exclusively expressed in PTMCs in the testis and played a novel role in supporting continual spermatogenesis in mice. The outcomes of these findings highlight the function of lipid metabolism in reproduction and provide new insights into the regulation of PTMCs in mammals.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

These authors declare that the data supporting the findings of this study are available within the paper and its supplementary materials or are available from the corresponding author upon reasonable request. Single-cell RNA-seq datasets have been uploaded to NCBI (BioProject: PRJNA898878).

References

  1. Griswold MD (2016) Spermatogenesis: the commitment to Meiosis. Physiol Rev 96:1–17

    Article  CAS  PubMed  Google Scholar 

  2. Maekawa M, Kamimura K, Nagano T (1996) Peritubular myoid cells in the testis: their structure and function. Arch Histol Cytol 59:1–13

    Article  CAS  PubMed  Google Scholar 

  3. Fernandez D et al (2008) Identification and characterization of myosin from rat testicular peritubular myoid cells. Biol Reprod 79:1210–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Russell LD, de Franca LR, Hess R, Cooke P (1995) Characteristics of mitotic cells in developing and adult testes with observations on cell lineages. Tissue Cell 27:105–128

    Article  CAS  PubMed  Google Scholar 

  5. Chen LY, Willis WD, Eddy EM (2016) Targeting the Gdnf Gene in peritubular myoid cells disrupts undifferentiated spermatogonial cell development. Proc Natl Acad Sci U S A 113:1829–1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhou R et al (2019) The roles and mechanisms of Leydig cells and myoid cells in regulating spermatogenesis. Cell Mol Life Sci 76:2681–2695

    Article  CAS  PubMed  Google Scholar 

  7. Kanatsu-Shinohara M et al (2003) Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod 69:612–616

    Article  CAS  PubMed  Google Scholar 

  8. Meng X et al (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287:1489–1493

    Article  CAS  PubMed  Google Scholar 

  9. Creemers LB et al (2002) Transplantation of germ cells from glial cell line-derived neurotrophic factor-overexpressing mice to host testes depleted of endogenous spermatogenesis by fractionated irradiation. Biol Reprod 66:1579–1584

    Article  CAS  PubMed  Google Scholar 

  10. Davis JT, Ong DE (1995) Retinol processing by the peritubular cell from rat testis. Biol Reprod 52:356–364

    Article  CAS  PubMed  Google Scholar 

  11. Welsh M, Saunders PT, Atanassova N, Sharpe RM, Smith LB (2009) Androgen action via testicular peritubular myoid cells is essential for male fertility. FASEB J 23:4218–4230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ademi H et al (2022) Deciphering the origins and fates of steroidogenic lineages in the mouse testis. Cell Rep 39:110935

    Article  CAS  PubMed  Google Scholar 

  13. Clark AM, Garland KK, Russell LD (2000) Desert hedgehog (Dhh) gene is required in the mouse testis for formation of adult-type Leydig cells and normal development of peritubular cells and seminiferous tubules. Biol Reprod 63:1825–1838

    Article  CAS  PubMed  Google Scholar 

  14. Chiarenza C, Filippini A, Tripiciano A, Beccari E, Palombi F (2000) Platelet-derived growth factor-BB stimulates hypertrophy of peritubular smooth muscle cells from rat testis in primary cultures. Endocrinology 141:2971–2981

    Article  CAS  PubMed  Google Scholar 

  15. Rebourcet D et al (2014) Sertoli cells control peritubular myoid cell fate and support adult Leydig cell development in the prepubertal testis. Development 141:2139–2149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cool J, Carmona FD, Szucsik JC, Capel B (2008) Peritubular myoid cells are not the migrating population required for testis cord formation in the XY gonad. Sex Dev 2:128–133

    Article  CAS  PubMed  Google Scholar 

  17. Uchida A et al (2020) Development and function of smooth muscle cells is modulated by Hic1 in mouse testis. Develop. https://doi.org/10.1242/dev.185884

    Article  Google Scholar 

  18. Qian Y et al (2013) Lgr4-mediated Wnt/beta-catenin signaling in peritubular myoid cells is essential for spermatogenesis. Development 140:1751–1761

    Article  CAS  PubMed  Google Scholar 

  19. Giller T, Buchwald P, Blum-Kaelin D, Hunziker W (1992) Two novel human pancreatic lipase related proteins, hPLRP1 and hPLRP2. Differences in colipase dependence and in lipase activity. J Biol Chem 267:16509–16516

    Article  CAS  PubMed  Google Scholar 

  20. Mahan JT, Heda GD, Rao RH, Mansbach CM 2nd (2001) The intestine expresses pancreatic triacylglycerol lipase: regulation by dietary lipid. Am J Physiol Gastrointest Liver Physiol 280:G1187-1196

    Article  CAS  PubMed  Google Scholar 

  21. Amara S et al (2010) Lipolysis of natural long chain and synthetic medium chain galactolipids by pancreatic lipase-related protein 2. Biochim Biophys Acta 1801:508–516

    Article  CAS  PubMed  Google Scholar 

  22. Gilleron M et al (2016) Lysosomal lipases PLRP2 and LPLA2 process mycobacterial multi-acylated lipids and generate t cell stimulatory antigens. Cell Chem Biol 23:1147–1156

    Article  CAS  PubMed  Google Scholar 

  23. Gao Y et al (2019) Pancreatic lipase-related protein 2 is responsible for the increased hepatic retinyl ester hydrolase activity in vitamin a-deficient mice. Febs j 286:4232–4244

    Article  CAS  PubMed  Google Scholar 

  24. Pang W et al (2011) The mPlrp2 and mClps genes are involved in the hydrolysis of retinyl esters in the mouse liver. J Lipid Res 52:934–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lowe ME, Kaplan MH, Jackson-Grusby L, D’Agostino D, Grusby MJ (1998) Decreased neonatal dietary fat absorption and T cell cytotoxicity in pancreatic lipase-related protein 2-deficient mice. J Biol Chem 273:31215–31221

    Article  CAS  PubMed  Google Scholar 

  26. Lowe ME (2000) Properties and function of pancreatic lipase related protein 2. Biochimie 82:997–1004

    Article  CAS  PubMed  Google Scholar 

  27. Xu L, Huang HJ, Zhou X, Liu CW, Bao YY (2017) Pancreatic lipase-related protein 2 is essential for egg hatching in the brown planthopper. Nilaparvata lugens Insect Mol Biol 26:277–285

    Article  CAS  PubMed  Google Scholar 

  28. Sias B et al (2005) Cloning and seasonal secretion of the pancreatic lipase-related protein 2 present in goat seminal plasma. Biochim Biophys Acta 1686:169–180

    Article  CAS  PubMed  Google Scholar 

  29. Chen SR, Liu YX (2016) Myh11-Cre is not limited to peritubular myoid cells and interaction between Sertoli and peritubular myoid cells needs investigation. Proc Natl Acad Sci USA 113:E2352

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Corliss BA et al (2019) Myh11 Lineage Corneal Endothelial Cells and ASCs Populate Corneal Endothelium. Invest Ophthalmol Vis Sci 60:5095–5103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tateno H et al (2013) Ca2+ ionophore A23187 can make mouse spermatozoa capable of fertilizing in vitro without activation of cAMP-dependent phosphorylation pathways. Proc Natl Acad Sci USA 110:18543–18548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang YQ, Batool A, Chen SR, Liu YX (2018) GATA4 is a negative regulator of contractility in mouse testicular peritubular myoid cells. Reproduction 156:343–351

    CAS  PubMed  Google Scholar 

  33. Li L et al (2017) Single-cell RNA-Seq analysis maps development of human germline cells and gonadal niche interactions. Cell Stem Cell 20:858–873

    Article  CAS  PubMed  Google Scholar 

  34. Davis JT, Bridges RB, Coniglio JG (1966) Changes in lipid composition of the maturing rat testis. Biochem J 98:342–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lenzi A, Picardo M, Gandini L, Dondero F (1996) Lipids of the sperm plasma membrane: from polyunsaturated fatty acids considered as markers of sperm function to possible scavenger therapy. Hum Reprod Update 2:246–256

    Article  CAS  PubMed  Google Scholar 

  36. Cross NL (1994) Phosphatidylcholine enhances the acrosomal responsiveness of human sperm. J Androl 15:484–488

    CAS  PubMed  Google Scholar 

  37. Rana AP, Misra S, Majumder GC, Ghosh A (1993) Phospholipid asymmetry of goat sperm plasma membrane during epididymal maturation. Biochim Biophys Acta 1210:1–7

    Article  CAS  PubMed  Google Scholar 

  38. Infante JP, Huszagh VA (1985) Synthesis of highly unsaturated phosphatidylcholines in the development of sperm motility: a role for epididymal glycerol-3-phosphorylcholine. Mol Cell Biochem 69:3–6

    Article  CAS  PubMed  Google Scholar 

  39. Masaki H et al (2017) Long-chain fatty acid triglyceride (TG) metabolism disorder impairs male fertility: a study using adipose triglyceride lipase deficient mice. Mol Hum Reprod 23:452–460

    Article  CAS  PubMed  Google Scholar 

  40. Gorga A et al (2017) PPARγ activation regulates lipid droplet formation and lactate production in rat Sertoli cells. Cell Tissue Res 369:611–624

    Article  CAS  PubMed  Google Scholar 

  41. Agarwal AK et al (2017) Metabolic, reproductive, and neurologic abnormalities in Agpat1-null mice. Endocrinology 158:3954–3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hermo L et al (2008) Alterations in the testis of hormone sensitive lipase-deficient mice is associated with decreased sperm counts, sperm motility, and fertility. Mol Reprod Dev 75:565–577

    Article  CAS  PubMed  Google Scholar 

  43. Ebihara C et al (2015) Seipin is necessary for normal brain development and spermatogenesis in addition to adipogenesis. Hum Mol Genet 24:4238–4249

    Article  CAS  PubMed  Google Scholar 

  44. Virtanen I et al (1986) Peritubular myoid cells of human and rat testis are smooth muscle cells that contain desmin-type intermediate filaments. Anat Rec 215:10–20

    Article  CAS  PubMed  Google Scholar 

  45. Xiao X, Ross LE, Sevilla WA, Wang Y, Lowe ME (2013) Porcine pancreatic lipase related protein 2 has high triglyceride lipase activity in the absence of colipase. Biochim Biophys Acta 1831:1435–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Alves BN et al (2009) Pancreatic lipase-related protein 2 (PLRP2) induction by IL-4 in cytotoxic T lymphocytes (CTLs) and reevaluation of the negative effects of its gene ablation on cytotoxicity. J Leukocyte Biol 86:701–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ding Z et al (2022) The suppression of pancreatic lipase-related protein 2 ameliorates experimental hepatic fibrosis in mice. Bba-Mol Cell Biol L 1867:1591

    Google Scholar 

  48. de Rooij DG, Russell LD (2000) All you wanted to know about spermatogonia but were afraid to ask. J Androl 21:776–798

    PubMed  Google Scholar 

  49. Richardson LL, Kleinman HK, Dym M (1995) Basement membrane gene expression by Sertoli and peritubular myoid cells in vitro in the rat. Biol Reprod 52:320–330

    Article  CAS  PubMed  Google Scholar 

  50. Siu MK, Cheng CY (2008) Extracellular matrix and its role in spermatogenesis. Adv Exp Med Biol 636:74–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lord T, Nixon B (2020) Metabolic changes accompanying spermatogonial stem cell differentiation. Dev Cell 52:399–411

    Article  CAS  PubMed  Google Scholar 

  52. Kanatsu-Shinohara M et al (2016) Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal. Genes Dev 30:2637–2648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Boussouar F, Benahmed M (2004) Lactate and energy metabolism in male germ cells. Trends Endocrinol Metab 15:345–350

    Article  CAS  PubMed  Google Scholar 

  54. Regueira M et al (2018) Apoptotic germ cells regulate Sertoli cell lipid storage and fatty acid oxidation. Reproduction 156:515–525

    CAS  PubMed  Google Scholar 

  55. Holdcraft RW, Braun RE (2004) Androgen receptor function is required in Sertoli cells for the terminal differentiation of haploid spermatids. Development 131:459–467

    Article  CAS  PubMed  Google Scholar 

  56. Tripiciano A, Palombi F, Ziparo E, Filippini A (1997) Dual control of seminiferous tubule contractility mediated by ETA and ETB endothelin receptor subtypes. FASEB J 11:276–286

    Article  CAS  PubMed  Google Scholar 

  57. Johnson K, Ross L, Miller R, Xiao X, Lowe ME (2013) Pancreatic lipase-related protein 2 digests fats in human milk and formula in concert with gastric lipase and carboxyl ester lipase. Pediatr Res 74:127–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tanphaichitr N, Hansen C (1994) Production of motile acrosome-reacted mouse sperm with nanomolar concentration of calcium ionophore A23187. Mol Reprod Dev 37:326–334

    Article  CAS  PubMed  Google Scholar 

  59. Tao HP et al (2022) Paternal hypoxia exposure impairs fertilization process and preimplantation embryo development. Zygote 30:48–56

    Article  CAS  PubMed  Google Scholar 

  60. Yan RG, Li BY, Yang QE (2020) Function and transcriptomic dynamics of Sertoli cells during prospermatogonia development in mouse testis. Reprod Biol 20:525–535

    Article  PubMed  Google Scholar 

  61. Chen L-Y, Brown PR, Willis WB, Eddy EM (2014) Peritubular Myoid Cells Participate in Male Mouse Spermatogonial Stem Cell Maintenance. Endocrinology 155:4964–4974

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the members of Reproductive Biology and Functional Genomics at the Northwest Institute of Plateau Biology for inspiring discussions and suggestions. We are also grateful for all financial support.

Funding

This work was supported by the National Natural Science Foundation of China (Grants No. 31771656 and 31571539) and Natural Science Foundation of Qinghai Province (2020-ZJ-902). G.X.J. was supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences (2021432) and Qinghai Kunlun Talents Program.

Author information

Authors and Affiliations

Authors

Contributions

QY and YH conceived and designed the study. HT and TL performed most of the experiments. XZ conducted all the mass lipid metabolomic data analyses. SL and HT conducted the scRNA-seq data analyses. HT and GJ analyzed the data. HT and QY wrote the manuscript. All authors read and approved the final paper.

Corresponding authors

Correspondence to Qi-En Yang or Yun-Peng Hou.

Ethics declarations

Conflicts of interest

These authors declare that they have no competing interests.

Ethical approval

Animal experiments were performed in accordance with the Guide for the Care and Use of Laboratory Animals and were approved by the Animal Welfare and Ethics Committee at the Northwest Institute of Plateau Biology, Chinese Academy of Sciences (approval code: hwipb012).

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, HP., Lu, TF., Li, S. et al. Pancreatic lipase-related protein 2 is selectively expressed by peritubular myoid cells in the murine testis and sustains long-term spermatogenesis. Cell. Mol. Life Sci. 80, 217 (2023). https://doi.org/10.1007/s00018-023-04872-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04872-y

Keywords

Navigation