Skip to main content

Advertisement

Log in

Alzheimer’s disease

A metabolic systems degeneration?

  • Original Articles
  • Published:
Neurochemical Pathology

Abstract

Alzheimer’s disease can be considered a late-onset system degeneration, characteristically involving certain populations of cholinergic neurons but eventually involving other cells as well. Decreases in cerebral metabolic rate occur in it and may reflect not only decreased neuronal activity, but also deficiencies in metabolic enzymes. Abnormalities reported in nonneural Alzheimer tissues suggest that at the molecular level it is a systemic disease whose biochemical aspects can usefully be studied in nonneural tissues. Alzheimer’s disease can be formulated as one of a number of metabolic encephalopathies that impair central cholinergic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adolfson, R., Gottfries C. G., Roos B. E., and Winblad B. (1979) Changes in brain catecholamines in patients with dementia of the Alzheimer type.Brit. J. Psychiatry 135, 216–223.

    Google Scholar 

  • Andria-Waltenbaugh A. M. and Puck T. T. (1977) Alzheimer’s disease: further evidence of a microtubular defect.J. Cell. Biol. 75, 279a.

    Google Scholar 

  • Averback P. (1983) Two new lesions in Alzheimer disease.Lancet 2, 1203.

    Article  PubMed  CAS  Google Scholar 

  • Bertagnolio B., Uziel G., Bottacchi E., Crenna G., D’Angelo A., and DiDonato S. (1980) Friedreich’s ataxia. II. Biochemical studies in cultured cells.Ital. J. Neurol. Sci. 1, 239–243.

    Article  PubMed  CAS  Google Scholar 

  • Bird E. D., Gale G. S., and Spokes E. G. (1977) Huntington’s chorea: Postmortem activity of enzymes involved in cerebral glucose metabolism.J. Neurochem. 29, 539–546.

    Article  PubMed  CAS  Google Scholar 

  • Blass J. P., Gibson G. E., Duffy T. E., and Plum F. (1981) Cholinergic dysfunction: a common denominator in metabolic encephalopathies, inCholinergic Mechanisms: Phylogenetic Aspects, Central and Peripheral Synapses, and Clinical Significance (Pepeu G. and Ladinsky H., eds.), pp. 921–928. Plenum Press, New York.

    Google Scholar 

  • Blass J. P., Hanin I., Barclay L., Kopp U., and Reding M. (1984) Elevated red cell to plasma choline ratios in Alzheimer’s disease, inDynamics of Cholinergic Function (Hanin I., ed.), Plenum Press, New York.

    Google Scholar 

  • Blass J. P., Kark R. A. P., Menon N., and Harris S. H. (1976) Decreased activities of the pyruvate and ketoglutarate dehydrogenase complexes in fibroblasts from five patients with Friedreich’s ataxia.N. Engl. J. Med. 295, 62–66.

    Article  PubMed  CAS  Google Scholar 

  • Blass J. P. and Weksler M. C. (1983) Toward an effective treatment of Alzheimer’s disease.Ann. Intern. Med. 98, 251–253.

    PubMed  CAS  Google Scholar 

  • Bondareff W., Mountjoy C. Q., and Roth M. (1981) Selective loss of neurones of origin of adrenergic projections to cerebral cortex (nucleus locus coeruleus) in senile dementia.Lancet 1, 783–784.

    Article  PubMed  CAS  Google Scholar 

  • Bowen D. M., Allen S. J., Benton J. S., Goodhart M. J., Haan E. A., Palmer A. M., Sims N. R., Smith C. C. T., Spillane J. A., Esir M. M., Neary D., Snowdon J. S., Wilcock G. K., and Davison A. N. (1983) Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer’s disease.J. Neurochem. 41, 266–272.

    Article  PubMed  CAS  Google Scholar 

  • Bowen D. M., Smith C. B., White P., and Davison A. N. (1976) Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies.Brain 99, 459–496.

    Article  PubMed  CAS  Google Scholar 

  • Bowen D. M., White P., Spillane J. A., Goodhart M. J., Curzon G., Iwangoff P., Meier-Ruge W., and Davidson A. N. (1979). Accelerated aging or selective neuronal loss as an important cause of dementia.Lancet 1, 11–13.

    PubMed  CAS  Google Scholar 

  • Browning M., Baudry M., and Lynch G. (1982) Evidence that high-frequency stimulation influences the phosphorylation of pyruvate dehydrogenase, and that the activity of this enzyme is linked to mitochondrial calcium sequestration.Prog. Brain Res. 56, 317–337.

    PubMed  CAS  Google Scholar 

  • Coyle J. T., Price D. L., and DeLong M. R. (1983) Alzheimer’s disease: A disorder of cortical cholinergic innervation.Science 219, 1184–1190.

    Article  PubMed  CAS  Google Scholar 

  • Crystal H. A. and Davies P. (1982) Cortical substance-P-like immunoreactivity in cases of Alzheimer’s disease and senile dementia of the Alzheimer type.J. Neurochem. 38, 1781–1784.

    Article  PubMed  CAS  Google Scholar 

  • Davies P. and Maloney A. J. F. (1976) Selective loss of central cholinergic neurones in Alzheimer’s disease.Lancet 2, 1403.

    Article  PubMed  CAS  Google Scholar 

  • Diamond J. M., Matsuyama S. S., Meier K., and Jarvik L. F. (1983) Elevation of erythrocyte countertransport in Alzheimer’s dementia.N. Engl. J. Med. 309, 1061–1062.

    PubMed  CAS  Google Scholar 

  • Dijkstra U. J., Willems J. L., Joosten E. M. G., and Gabreels F. J. M. (1983) Friedreich ataxia and low pyruvate carboxylase activity in liver and fibroblasts.Ann. Neurol. 13, 325–327.

    Article  PubMed  CAS  Google Scholar 

  • Drachman D. A. and Leavitt J. (1974) Human memory and the cholinergic system. Relation to aging.Arch. Neurol. 30, 113–121.

    PubMed  CAS  Google Scholar 

  • Folstein M. F. and Breitner J. C. S. (1981) Language disorder predicts familial Alzheimer disease.Johns Hopkins Med. J. 149, 145–147.

    PubMed  CAS  Google Scholar 

  • Foster N. L., Chase T. N., Redio P., Patronas N. J., Brooks R. A., and DiChuro G. (1983) Alzheimer’s disease: Focal cortical changes shown by positron emission tomography.Neurology 33, 961–965.

    PubMed  CAS  Google Scholar 

  • Garcia C. A., Reding M. J., and Blass J. P. (1981) Overdiagnosis of dementia.J. Am. Geriatr. Soc. 29, 407–410.

    PubMed  CAS  Google Scholar 

  • Gibson G. E. and Peterson C. (1981) Aging decreases oxidative metabolism and the release and synthesis of acetylcholine.J. Neurochem. 37, 978–984.

    Article  PubMed  CAS  Google Scholar 

  • Gibson G. E. and Peterson C. (1983) Acetylcholine and oxidative metabolism in septum and hippocampus in vitro.J. Biol. Chem. 258, 1142–1145.

    PubMed  CAS  Google Scholar 

  • Gibson G. E., Pulsinelli W. A., Blass J. P., and Duffy T. E. (1981) Brain dysfunction in mild to moderate hypoxia.Am. J. Med. 70, 1247–1254.

    Article  PubMed  CAS  Google Scholar 

  • Gottfries C. G., Gottfries I., and Ross B. E. (1969) The investigation of homovanillic acid in the human brain and its correlation to senile dementia.Br. J. Psychiatry 115, 563–574.

    PubMed  CAS  Google Scholar 

  • Hirsch J. A. and Gibson G. E. (1982) Anoxia inhibits release of acetylcholine but not of norepinephrine from rat brain slices.Fed. Proc. 41, 8738.

    Google Scholar 

  • Ingvar D. H. and Lassen N. A., eds. (1975) The coupling of function, metabolism and blood flow in the brain, pp. 1–523. Munksgaard, Copenhagen.

    Google Scholar 

  • Jarvik L. F., Matsuyama S.S., Kessler J. O., Fu T. K., Tsai S. Y., and Clark E. O. (1982) Philothermal response of polymorphonuclear leukocytes in dementia of the Alzheimer type.Neurobiol. Aging 3, 93–99.

    Article  PubMed  CAS  Google Scholar 

  • Krause L. J. (1983) Decreased natural killer cell activity in Alzheimer’s disease.Neurosci. Abstr. 9, 115.

    Google Scholar 

  • Ksiezak-Reding H., Murphy C., and Blass J. P. (1983) Enzyme activities in platelets from patients with Alzheimer disease.Age 6, 11.

    Article  Google Scholar 

  • Larsson T., Sjogren T., and Jacobson G. (1983) Senile dementia—A clinical, sociomedical and genetic study.Acta Psychiatr. Scand., Suppl. 167, 39–150.

    Google Scholar 

  • Lowry O. H. and Passonneau J. V. (1964) The relationships between substrates and enzymes of glycolysis in brain.J. Biol. Chem. 239, 31–42.

    PubMed  CAS  Google Scholar 

  • Markesberry W. R., Leung P. K., and Butterfield D. A. (1980) Spin label and biochemical studies of erythrocyte membranes in Alzheimer’s disease.J. Neurol. Sci. 45, 232–330.

    Article  Google Scholar 

  • Miller A. E., Neighbour P. A., Katzman R., Aronson M., and Lipkowitz R. (1981) Immunologic studies in senile dementia of the Alzheimer type: Evidence of enhanced suppressor cell activity.Ann. Neurol. 10, 506–510.

    Article  PubMed  CAS  Google Scholar 

  • Nordenson I., Adolfson R., Beckman G., Bucht G., and Winblad G. (1980) Chromosomal abnormality in dementia of Alzheimer type.Lancet 1, 481–482.

    Article  PubMed  CAS  Google Scholar 

  • Perry E. K., Perry R. H., Blessed G., and Tomlinson B. E. (1977) Necropsy evidence of central cholinergic deficits in senile dementia.Lancet 2, 189.

    Article  Google Scholar 

  • Perry E. K., Perry R. H., Tomlinson B. E., Blessed G., and Gibson P. H. (1980) Coenzyme-A-acetylating enzymes in Alzheimer’s disease: possible cholinergic “compartment” of pyruvate dehydrogenase.Neurosci. Lett. 18, 105–110.

    Article  PubMed  CAS  Google Scholar 

  • Perry E. K., Tomlinson B. E., Blessed G., Perry R. H., Cross A. J., and Crow T. (1981) Noradrenergic and cholinergic systems in senile dementia of Alzheimer type.Lancet 2, 149.

    Article  PubMed  CAS  Google Scholar 

  • Perry R. H., Wilson I. E., Bober M. J., Atack J., Blessed G., Tomlinson B. E., and Perry E. K. (1982) Plasma and erythrocyte acetylcholinesterase in senile dementia of Alzheimer type.Lancet 1, 174–175.

    Article  PubMed  CAS  Google Scholar 

  • Plaitakis A., Berl S., and Yahr M. O. (1984) Neurological disorders associated with deficiency of glutamate dehydrogenase.Ann. Neurol. 15, 144–153.

    Article  PubMed  CAS  Google Scholar 

  • Prusiner S. B., McKinley M. P., Bowman K. A., Bolton D. C., Bendheim P. E., Groth D. F., and Glenner G. S. (1983) Scrapie prions aggregate to form amyloid-like birefringent rods.Cell 35, 349–358.

    Article  PubMed  CAS  Google Scholar 

  • Reding M. J., Haycox J., Wigforss K., Brush D., and Blass J. P. (1984) Outcome of patients referred to a dementia service.J. Am. Geriatr. Soc. (in press).

  • Risberg J. (1980) Regional cerebral blood flow measurements by133Xe-inhalation: methodology and applications in neuropsychology and psychiatry.Brain Lang. 9, 9–34.

    Article  PubMed  CAS  Google Scholar 

  • Robbins J. H., Otsuka F., Tarone R. E., Polinsky R. J., Brunback R. A., Moshell A. N., Nee L. E., Ganges M. B., and Cayeux S. T. (1983) Radiosensitivity in Alzheimer disease and Parkinson disease.Lancet 1, 468–469.

    Article  PubMed  CAS  Google Scholar 

  • Ropper A. H. and Williams R. S. (1980) Relationship between plaques, tangles and dementia in Down syndrome.Neurology 30, 639–644.

    PubMed  CAS  Google Scholar 

  • Rosser M. N. (1981) Parkinson’s disease and Alzheimer’s disease: disorders of the isodendritic core.Br. Med. J. 283, 1588–1590.

    Google Scholar 

  • Routtenberg A. (1982) Identification and back titration of brain pyruvate dehydrogenase: functional significance for behavior.Prog. Brain Res. 56, 349–374.

    Article  PubMed  CAS  Google Scholar 

  • Siesjo B. K. (1978)Brain Energy Metabolism, Wiley, New York.

    Google Scholar 

  • Sims N. R., Bowen D. M., Allen S. J., Smith C. T. T., Neary D., Thomas D. J., and Davison A. N. (1983a) Presynaptic cholinergic dysfunction in patients with dementia.J. Neurochem. 40, 503–509.

    Article  PubMed  CAS  Google Scholar 

  • Sims N. R., Bowen D. M., Neary D., and Davison A. N. (1983b) Metabolic processes in Alzheimer’s disease: Adenine nucleotide content and production of14CO2 from [U-14C]glucose in vitro in human neocortex.J. Neurochem. 41, 1329–1334.

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff L. (1966) Cerebral circulatory and metabolic changes associated with aging.Res. Publ. Assoc. Res. Nerv. Ment. Dis. 41, 237–265.

    PubMed  CAS  Google Scholar 

  • Sorbi S., Bird E. D., and Blass J. P. (1983) Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain.Ann. Neurol. 13, 72–78.

    Article  PubMed  CAS  Google Scholar 

  • Stumpf D. A., Parks J. K., Eguren L. A., and Haas R. (1982) Friedreich ataxia. III. Mitochondrial malic enzyme deficiency.Neurology 32, 221–228.

    PubMed  CAS  Google Scholar 

  • Terry R. D. (1978) Senile dementia.Fed. Proc. 37, 2837–2840.

    PubMed  CAS  Google Scholar 

  • Terry R. D., Peck A., DeTeresa R., Schechter R., and Horoupian D. S. (1981) Some morphometric aspects of the brain in senile dementia of the Alzheimer type.Ann. Neurol. 10, 184–192.

    Article  PubMed  CAS  Google Scholar 

  • Thomas L. (1981) On the problem of dementia.Discover (Aug.) 34–36.

    Google Scholar 

  • Zemcov A., Risberg J., Barclay L., and Blass, J. P. (1983) A double-blind study of rCBF in the differential diagnosis of dementias.Eur. Neurol. 22, 20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blass, J.P., Zemcov, A. Alzheimer’s disease. Neurochemical Pathology 2, 103–114 (1984). https://doi.org/10.1007/BF02834249

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02834249

Index Entries

Navigation