Skip to main content
Log in

The effect of solar activity on the evolution of solar wind parameters during the rise of the 24th cycle

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

The dynamics of parameters of the near-Earth solar wind (SW) and the effect of solar activity on the parameters of three SW components (fast SW from large-scale coronal holes (CHs); slow SW from active regions, streamers, and other sources; and transient flows related to sporadic solar activity) at the beginning of the 24th solar cycle (2009–2011) are analyzed. It is demonstrated that temperaturedependent parameters of ionic composition (C+6/C+5 and O+7/O+6) of the transient SW component in the profound minimum of solar activity in 2009 were correlated with the variation of the rate of weak (type C and weaker) flares. This verifies the presence of a hot component associated with these flares in the SW. The variations in the velocity and the kinetic temperature of fast SW from CHs with an increase in activity are more pronounced in the bulk of the high-speed stream, and the variations of O+7/O+6 and Fe/O ratios and the magnitude of the interplanetary magnetic field are the most prominent in the region of interaction between fast and slow SW streams. The analysis reveals that a value of O+7/O+6 = 0.1 serves as the criterion to distinguish between fast SW streams and interplanetary coronal mass ejections in the 2009 activity minimum. This value is lower than the one (0.145) determined earlier based on the data on the 23rd cycle (Zhao et al., 2009). Therefore, the distinguishing criterion is not an absolute one and depends on the solar activity level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antiochos, S.K, Mikic’, Z., Titov, V.S., Lionello, R., and Linker, J.A., A model for the sources of the slow solar wind, Astrophys. J., 2011, vol. 731, p. 11.

    Article  ADS  Google Scholar 

  • Antiochos, S.K., Linker, J.A., Lionello, R, Mikic’, Z., Titov, V.S., and Zurbuchen, T.H., The structure and dynamics of the corona–heliosphere connection, Space Sci. Rev., 2012, vol. 172, pp. 169–185.

    Article  ADS  Google Scholar 

  • Arge, C.N. and Pizzo, V.J., Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates, J. Geophys. Res., 2000, vol. 105, pp. 10465–10480.

    Article  ADS  Google Scholar 

  • Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., and van Dessel, E.L., EIT: extreme-ultraviolet imaging telescope for the SOHO mission, Solar Phys., 1995, vol. 162, pp. 291–312.

    Article  ADS  Google Scholar 

  • Eselevich, M., Eselevich, V., and Fujiki, K, Streamer belt and chains as the main sources of quasi-stationary slow solar wind, Solar Phys., 2007, vol. 240, pp. 135–151.

    Article  ADS  Google Scholar 

  • Eselevich, V.G., Fainshtein, V.G., Rudenko, G.V., et al, Velocity prediction for quasistationary solar wind and intensity of geomagnetic perturbations caused by it, Kosm. Issl., 2009, vol. 47, no. 2, p. 114.

    Google Scholar 

  • Feldman, U., Landi, E., and Schwadron, N.A., On the sources of fast and slow solar wind, J. Geophys. Res., 2005, p. A07109.

    Google Scholar 

  • Fisk, L.A., Schwadron, N.A., and Zurbuchen, T.H, On the slow solar wind, Space Sci. Rev., 1998, vol. 86, pp. 51–60.

    Article  ADS  Google Scholar 

  • Gburek, S., Sylwester, J., Kowalinski, M., Bakala, J., Kordylewski, Z., Podgorski, P., Plocieniak, S., Siarkowski, M., Sylwester, B., Trzebinski, W., Kuzin, S.V., Pertsov, A.A., Kotov, Y.D., Farnik, F., Reale, F., and Phillips, K.J.H., SPHINX: the solar photometer in X-rays, Solar Phys., 2013, vol. 283, pp. 631–649.

    Article  ADS  Google Scholar 

  • Gloeckler, G., Bedini, P., Bochsler, P., Fisk, L.A., Geiss, J., Ipavich, F.M., Cani, J., Fischer, J., Kallenbach, R., Miller, J., Tums, O., and Winner, R, Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ace spacecraft, Space Sci. Rev., 1998, vol. 86, pp. 497–539.

    Article  ADS  Google Scholar 

  • Gosling, J.T, Corotating and transient solar wind flows in three dimensions, Annu. Rev. Astron. Astrophys., 1996, vol. 34, pp. 35–74.

    Article  ADS  Google Scholar 

  • Hundhausen, A.J., Gilbert, H.E., and Bame, S.J., Ionization state of the interplanetary plasma, J. Geophys. Res., 1968, vol. 73, p. 5485.

    Article  ADS  Google Scholar 

  • Hurlburt, N., Cheung, M., Schrijver, C., Chang, L., Freeland, S., Green, S., Heck, C., Jaffey, A., Kobashi, A., Schiff, D., Serafin, J., Seguin, R., Slater, G., Somani, A., and Timmons, R, Heliophysics event knowledgebase for the solar dynamics observatory (SDO) and beyond, Solar Phys., 2012, vol. 275, pp. 67–78.

    Article  ADS  Google Scholar 

  • Jian, L., Interplanetary Coronal Mass Ejections (ICMEs) from Wind and ACE data during 1995–2009, 2013. http://www-ssc.igpp.ucla.edu/~jlan/ACE/Level3/

    Google Scholar 

  • Kasper, J.C., Stevens, M.L., Lazarus, A.J., Steinberg, J.T., and Ogilvie, K.W, Solar wind helium abundance as a function of speed and heliographic latitude: variation through a solar cycle, Astrophys. J., 2007, vol. 660, pp. 901–910.

    Article  ADS  Google Scholar 

  • Kasper, J.C., Stevens, M.L., Korreck, K.E., Maruca, B.A., Kiefer, K.K., Schwadron, N.A., and Lepri, S.T, Evolution of the relationships between helium abundance, minor ion charge state, and solar wind speed over the solar cycle, Astrophys. J., 2012, vol. 745, id. 162, p. 6.

    Google Scholar 

  • Kilpua, E.K.J., Jian, L.K., Li, Y., Luhmann, J.G., and Russell, C.T, Observations of ICMEs and ICME-like solar wind structures from 2007–2010 using near-Earth and stereo observations, Solar Phys., 2012, vol. 281, pp. 391–409.

    ADS  Google Scholar 

  • Kilpua, E.K.J., Mierla, M., Zhukov, A.N., Rodriguez, L., Vourlidas, A., and Wood, B, Solar sources of interplanetary coronal mass ejections during the solar cycle 23/24 minimum, Solar Phys., 2014, vol. 289, pp. 3773–3797.

    Article  ADS  Google Scholar 

  • Krieger, A.S., Timothy, A.F., and Roelof, E.C., A coronal hole and its identification as the source of a high velocity solar wind stream, Solar Phys., 1973, vol. 29, p. 505.

    Article  ADS  Google Scholar 

  • Lepri, S.T., Landi, E., and Zurbuchen, T.H, Solar wind heavy ions over solar cycle 23: ACE/SWICS measurements, Astrophys. J., 2013, vol. 768, id 94, p. 13.

    Google Scholar 

  • Liewer, P.C., Neugebauer, M., and Zurbuchen, T, Characteristics of active-region sources of solar wind near solar maximum, Solar Phys., 2004, vol. 223, pp. 209–229.

    Article  ADS  Google Scholar 

  • McComas, D.J., Bame, S.J., Barker, P., Feldman, W.C., Phillips, J.L., Riley, P., and Griffee, J.W, Solar wind electron proton alpha monitor (SWEPAM) for the advanced composition explorer, Space Sci. Rev., 1998, vol. 86, pp. 563–612.

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Kiefer, K.K., Leamon, R.J., Kasper, J.C., and Stevens, M.L, Solar cycle variations in the elemental abundance of helium and fractionation of iron in the fast solar wind: indicators of an evolving energetic release of mass from the lower solar atmosphere, Astrophys. J. Lett., 2011, vol. 740, id L23, p. 5.

    Google Scholar 

  • Nolte, J.T., Krieger, A.S., Timothy, A.F., Gold, R.E., Roelof, E.C., Vaiana, G., Lazarus, A.J., Sullivan, J.D., and McIntosh, P.S, Coronal holes as sources of solar wind, Solar Phys., 1976, vol. 46, p. 303.

    Article  ADS  Google Scholar 

  • Obridko, V.N., Shelting, B.D., Livshits, I.M., and Asgarov, A.B, Contrast of coronal holes and parameters of associated solar wind streams, Solar Phys., 2009, vol. 260, p. 191.

    Article  ADS  Google Scholar 

  • Richardson, I.G. and Cane, H.V, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): catalog and summary of properties, Solar Phys., 2010, vol. 264, pp. 189–237.

    Article  ADS  Google Scholar 

  • Riley, P. and Luhmann, J.G, Interplanetary signatures of unipolar streamers and the origin of the slow solar wind, Solar Phys., 2012, vol. 277, pp. 355–373.

    Article  ADS  Google Scholar 

  • Rotter, T., Veronig, A.M., Temmer, M., and VrŠnak, B, Relation between coronal hole areas on the Sun and the solar wind parameters at 1 AU, Solar Phys., 2012, vol. 281, p. 793.

    Article  ADS  Google Scholar 

  • Shugay, Yu S., Veselovsky, I.S., Seaton, D.B., and Berghmans, D, Hierarchical approach to forecasting recurrent solar wind streams, Solar Syst. Res., 2011, vol. 45, no. 6, pp. 546–556.

    Article  ADS  Google Scholar 

  • Slemzin, V., Harra, L., Urnov, A., Kuzin, S., Goryaev, F., and Berghmans, D, Signatures of slow solar wind streams from active regions in the inner corona, Solar Phys., 2013, vol. 286, pp. 157–184.

    Article  ADS  Google Scholar 

  • Slemzin, V.A. and Shugai, Yu.S, The way to identify coronal sources of solar wind according to solar images in ultra-violet spectrum, Kosm. Issl., 2015, vol. 53, no. 1, pp. 1–12.

    Google Scholar 

  • Smith, C.W., Acuna, M.H., Burlaga, L.F., L’ Heureux, J., Ness, N.F., and Scheifele, J, The ace magnetic field experiment, Space Sci. Rev., 1998, vol. 86, pp. 613–632.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Guarnieri, F.L., Gopalswamy, N., Grande, M., Kamide, Y., Kasahara, Y., Lu, G., Mann, I., McPherron, R., Soraas, F., and Vasyliunas, V., Corotating solar wind streams and recurrent geomagnetic activity: a review, J. Geophys. Res.: Space Phys., 2006, vol. 111, id A07S01.

    ADS  Google Scholar 

  • Vršnak, B., Temmer, M., and Veronig, A.M, Coronal holes and solar wind high-speed streams: II. Forecasting the geomagnetic effects, Solar Phys., 2007, vol. 240, p. 331.

    Article  ADS  Google Scholar 

  • Wang, Y.-M, Semiempirical models of the slow and fast solar wind, Space Sci. Rev., 2012, vol. 172, pp. 123–143.

    Article  ADS  Google Scholar 

  • Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., and Yermolaev, M.Yu, Specific interplanetary conditions for CIR-, sheath-, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis, Ann. Geophys., 2010, vol. 28, pp. 2177–2186.

    Article  ADS  Google Scholar 

  • Zhang, Y., Sun, W., Feng, X.S., Deehr, C.S., Fry, C.D., and Dryer, M, Statistical analysis of corotating interaction regions and their geoeffectiveness during solar cycle 23, J. Geophys. Res., 2008, vol. 113, id A08106.

    ADS  Google Scholar 

  • Zhao, L., Zurbuchen, T.H., and Fisk, L.A, Global distribution of the solar wind during solar cycle 23: ACE observations, Geophys. Rev. Lett., 2009, vol. 36, id L14104.

    Article  ADS  Google Scholar 

  • Zhao, L., Landi, E., Zurbuchen, T.H., Fisk, L.A., and Lepri, S.T, The evolution of 1 AU equatorial solar wind and its association with the morphology of the heliospheric current sheet from solar cycles 23 to 24, Astrophys. J., 2014, vol. 793, id 44, p. 8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Rod’kin.

Additional information

Original Russian Text © D.G. Rod’kin, Yu.S. Shugay, V.A. Slemzin, I.S. Veselovskii, 2016, published in Astronomicheskii Vestnik, 2016, Vol. 50, No. 1, pp. 48–59.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rod’kin, D.G., Shugay, Y.S., Slemzin, V.A. et al. The effect of solar activity on the evolution of solar wind parameters during the rise of the 24th cycle. Sol Syst Res 50, 44–55 (2016). https://doi.org/10.1134/S0038094616010032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094616010032

Keywords

Navigation