Skip to main content
Log in

Systematic Position of Palaeortyx (Aves, ?Phasianidae) and Notes on the Evolution of Phasianidae

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

Postcranial skeletal morphology of the Oligocene-Miocene fossil galliform genus Palaeortyx is compared with modern representatives of Phasianoidea. In particular, Palaeortyx is compared with the modern African Ptilopachus, which was recently transferred to the American family Odontophoridae, to which Palaeortyx was originally assigned. It is shown here that Palaeortyx lacks derived features of Odontophoridae, and all the apparent similarities (including the deep fossa pneumotricipitalis dorsalis of the humerus) represent plesiomorphies of the clade Odontophoridae+Phasianidae or even a higher clade. No essential similarity between Palaeortyx and Ptilopachus can be observed. The greater similarity between Palaeortyx and Rollulinae is here considered as being plesiomorphic for Phasianidae s.s. It is thus concluded that Palaeortyx most likely represents a basal member of the Phasianidae and diverged before the Rollulinae and Phasianinae dichotomy. The evolutionary history of this genus and of the Phasianidae in general is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Ballmann, P., Les oiseaux de la Grive-Saint-Alban (Isère), Geobios, 1969, vol. 2, pp. 157–204.

    Article  Google Scholar 

  2. Ballmann, P., Fossil birds from the Neogene of Gargano Peninsula (Italy), part two, Scripta Geol., 1976, vol. 38, pp. 1–59.

    Google Scholar 

  3. Cai Tian-long, Fjeldså, J., Wu Yong-jie, Shao Shi-miao, Chen You-hua, Quan Qing, Li Xin-hai, Song Gang, Qu Yan-hua, Qiao Ge-xia, and Lei Fu-min, What makes the Sino-Himalayan mountains the major diversity hotspots for pheasants? J. Biogeogr., 2018, vol. 45, no. 3, pp. 640–651.

    Article  Google Scholar 

  4. Cohen, C., Wakeling, J.L., Mandiwana-Neudani, T.G., Sande, E., Dranzoa, C., Crowe, T.M., and Bowie, R.C.K., Phylogenetic affinities of evolutionarily enigmatic African galliforms: the Stone Partridge Ptilopachus petrosus and Nahan’s Francolin Francolinus nahani, and support for their sister relationship with New World quails, Ibis, 2012, vol. 154, no. 4, pp. 768–780.

    Article  Google Scholar 

  5. Cox, W.A., Kimball, R.T., and Braun, E.L., Phylogenetic position of the new world quail (Odontophoridae): eight nuclear loci and three mitochondrial regions contradict morphoology and the sibley-ahlquist tapestry, Auk, 2007, vol. 124, no. 1, pp. 71–84.

    Article  Google Scholar 

  6. Crowe, T.M., Molecules vs morphology in phylogenetics: a non-controversy, Trans. R. Soc. South Africa, 1988, vol. 46, no. 4, pp. 317–334.

    Article  Google Scholar 

  7. Dyke, G.J., Gulas, B.E., and Crowe, T.M., Suprageneric relationships of galliform birds (Aves, Galliformes): a cladistic analysis of morphological characters, Zool. J. Linn. Soc., 2003, vol. 137, pp. 227–244.

    Article  Google Scholar 

  8. Flower, B.P. and Kennett, J.P., The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling, Palaeogeogr., Palaeoclimatol., Palaeoecol., 1994, vol. 108, pp. 537–555.

    Article  Google Scholar 

  9. Göhlich, U.B. and Mourer-Chauviré, C., Revision of the phasianids (Aves: Galliformes) from the Lower Miocene of Saint-Gérand-Le-Puy (Allier, France), Palaeontology, 2005, vol. 48, no. 6, pp. 1331–1350.

    Article  Google Scholar 

  10. Göhlich, U.B. and Pavia, M., A new species of Palaeortyx (Aves: Galliformes: Phasianidae) from the Neogene of Gargano, Italy, Oryctos, 2008, vol. 7, pp. 95–108.

    Google Scholar 

  11. Holman, J.A., Osteology of gallinaceous birds, Q. J. Florida Acad. Sci., 1964, vol. 27, no. 3, pp. 230–252.

    Google Scholar 

  12. Hosner, P.A., Braun, E.L., and Kimball, R.T., Land connectivity changes and global cooling shaped the colonization history and diversification of New World quail (Aves: Galliformes: Odontophoridae), J. Biogeogr., 2015, vol. 42, no. 10, pp. 1883–1895.

    Article  Google Scholar 

  13. Hosner, P.A., Tobias, J.A., Braun, E.L., and Kimball, R.T., How do seemingly non-vagile clades accomplish trans-marine dispersal? Trait and dispersal evolution in the landfowl (Aves: Galliformes), Proc. R. Soc. B: Biol. Sci., 2017, vol. 284, no. 1854: 20170210.

  14. Kimball, R.T. and Braun, E.L., Does more sequence data improve estimates of galliform phylogeny? Analyses of a rapid radiation using a complete data matrix, Peer J., 2014, vol. 2: e361.

    Article  Google Scholar 

  15. Mayr, G., A new basal galliform bird from the middle Eocene of Messel (Hessen, Germany), Senckenb. lethaea, 2000, vol. 80, no. 1, pp. 45–57.

  16. Mayr, G., New specimens of the early Eocene stem group galliform Paraortygoides (Gallinuloididae), with comments on the evolution of a crop in the stem lineage of Galliformes, J. Ornithol., 2006, vol. 147, no. 1, pp. 31–37.

    Article  Google Scholar 

  17. Mayr, G., PaleogeneFossil Birds, Berlin, Heidelberg: Springer-Verlag, 2009.

    Google Scholar 

  18. Mayr, G., Variations in the hypotarsus morphology of birds and their evolutionary significance, Acta Zool., 2016, vol. 97, no. 2, pp. 196–210.

    Article  Google Scholar 

  19. Mayr, G., Avian Evolution: The Fossil Record of Birds and Its Paleobiological Significance, Chichester, West Sussex: John Wiley & Sons, 2017.

    Google Scholar 

  20. Mayr, G., Poschman, M., and Wuttke, M., A nearly complete skeleton of the fossil galliform bird Palaeortyx from the late Oligocene of Germany, Acta Ornithol., 2006, vol. 41, no. 2, pp. 129–135.

    Google Scholar 

  21. Milne-Edwards, A., Recherches anatomiques et paléontologiques pour servir à l’histoire des oiseaux fossiles de la France, Paris: G. Masson, 1869.

    Google Scholar 

  22. Mourer-Chauviré, C., The Galliformes (Aves) from the Phosphorites du Quercy (France): systematics and biostratigraphy, Natur. Hist. Mus. Los Angels Co., Sci. Ser., 1992, no. 36, pp. 67–95.

  23. Mourer-Chauviré, C., Birds (Aves) from the Early Miocene of the Northern Sperrgebiet, Namibia, Mem. Geol. Surv. Namibia, 2008, vol. 20, pp. 147–167.

    Google Scholar 

  24. Olson, S.L., Telecrex restudied: a small Eocene guineafowl, Wilson Bull., 1974, vol. 86, no. 3, pp. 246–250.

    Google Scholar 

  25. Olson, S.L., The fossil record of birds, Avian Biology. Vol. 8, Farner, D.S., King, J.R., and Parkes, K.C., Eds., New York: Acad. Press, 1985, pp. 79–238.

    Google Scholar 

  26. Potapov, R.L., The origin and evolution of the fauna of galliform birds (Galliformes) of the Ethiopian region, Zool. Zh., 1999, vol. 78, pp. 301–302.

    Google Scholar 

  27. Prum, R.O., Berv, J.S., Dornburg, A., Field, D.J., Townsend, J.P., Moriarty Lemmon, E., and Lemmon, A.R., A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing, Nature, 2015, vol. 526, no. 7574, pp. 569–573.

    Article  Google Scholar 

  28. Sibley, C.G. and Ahlquist, J.E., Phylogeny and Classification of Birds: A Study in Molecular Evolution, New Heaven: Yale Univ. Press, 1990.

  29. Stein, R.W., Brown, J.W., and Mooers, A.Ø., A molecular genetic time scale demonstrates Cretaceous origins and multiple diversification rate shifts within the order Galliformes (Aves), Mol. Phylogenet. Evol., 2015, vol. 92, pp. 155–164.

    Article  Google Scholar 

  30. Tesakov, A.S., Syromyatnikova, E.V., Danilov, I.G., Klementiev, A.M., Sizov, A.V., Zelenkov, N.V., Sychevskaya, E.K., Lopatin, A.V., van den Hoek Ostende, L.W., Martynovich, N.V., Volkova, N.V., and Obraztsova, E.M., Advances in the research on the Miocene vertebrates of the Tagay locality (Olkhon Island, Lake Baikal), Paleontologiia Tsentral’noi Azii i sopredel’nykh regionov. Mezhdunar. konf. K 45-let. SRMPE (Paleontology of Central Asia and Neighboring Regions. Proc. Int. Conf. 45 Anniversary Joint Soviet-Russian-Mongolian Paleontology Expedition), Moscow: Paleontol. Inst. Ross. Akad. Nauk, pp. 75–77.

  31. van Tuinen, M. and Dyke, G.J., Calibration of galliform molecular clocks using multiple fossils and genetic partitions, Mol. Phylogenet. Evol., 2004, vol. 30, no. 1, pp. 74–86.

    Article  Google Scholar 

  32. Wang Ning, Kimball, R.T., Braun, E.L., Liang Bin, and Zhang Zheng-wang, Assessing phylogenetic relationships among Galliformes: A multigene phylogeny with expanded taxon sampling in Phasianidae, PLoS One, 2013, vol. 8, no. 5: e64312.

    Article  Google Scholar 

  33. Wang Ning, Kimball, R.T., Braun, E.L., Liang Bin, and Zhang Zheng-wang, Ancestral range reconstruction of Galliformes: the effects of topology and taxon sampling, J. Biogeogr., 2017, vol. 44, no. 1, pp. 122–135.

    Article  Google Scholar 

  34. Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K., Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 2001, vol. 292, no. 5517, pp. 686–693.

    Article  Google Scholar 

  35. Zelenkov, N.V., Phylogenetic analysis of some Neogene phasianid genera (Aves: Phasianidae), Paleontol. J., 2009, vol. 43, no. 4, pp. 438–443.

    Article  Google Scholar 

  36. Zelenkov, N.V., Revision of non-passeriform birds from Polgárdi (Hungary, Upper Miocene): 2. Galliformes, Paleontol. J., 2016, vol. 50, no. 6, pp. 623–634.

    Article  Google Scholar 

  37. Zelenkov, N.V., The revised avian fauna of Rudabánya (Hungary, Late Miocene), Paleontología y evolución de las Aves, Acosta Hospitaleche, C., Agnolin, F., Haidr, N., Noriega, J.I., and Tambussi, C., Eds., Buenos-Aires: Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, 2017, pp. 253–266.

  38. Zelenkov, N.V. and Kurochkin, E.N., Neogene phasianids (Aves: Phasianidae) of Central Asia. 1. Genus Tologuica gen. nov., Paleontol. J., 2009, vol. 43, no. 2, pp. 86–92.

    Google Scholar 

  39. Zelenkov, N.V. and Kurochkin, E.N., Neogene phasianids (Aves: Phasianidae) of Central Asia. 3. Genera Lophogallus gen. nov. and Syrmaticus, Paleontol. J., 2010, vol. 44, no. 3, pp. 79–87.

    Article  Google Scholar 

  40. Zelenkov, N.V. and Kurochkin, E.N., Class Aves, Iskopaemye pozvonochnye Rossii i sopredel’nyh stran. Iskopaemye reptilii i ptitsy. Chast’ 2 (Fossil Vertebrates of Russia and Neighbouring Countries. Fossil Reptiles and Birds. Part 2), Kurochkin, E.N., Lopatin, A.V., and Zelenkov, N.V., Eds., Moscow: GEOS, 2015, pp. 86–290.

    Google Scholar 

  41. Zelenkov, N.V. and Panteleyev, A.V., Three bird taxa (Aves: Anatidae, Phasianidae, Scolopacidae) from the Late Miocene of the Sea of Azov (Southwestern Russia), Paläontol. Z., 2015, vol. 89, no. 3, pp. 515–527.

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 17-04-01162. The author would like to deeply thank the curators of the mentioned museum collections for giving access to fossil and comparative material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Zelenkov.

Additional information

Translated by D. Ponomarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelenkov, N.V. Systematic Position of Palaeortyx (Aves, ?Phasianidae) and Notes on the Evolution of Phasianidae. Paleontol. J. 53, 194–202 (2019). https://doi.org/10.1134/S0031030119020138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030119020138

Keywords:

Navigation