Skip to main content
Log in

Recent Advances in Functional Cellulose-Based Materials: Classification, Properties, and Applications

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Cellulose has sparked considerable interest in the advancement of biodegradable functional materials owing to its abundant natural sources and exceptional biocompatibility. This review offers a comprehensive review of the latest research and development concerning cellulose-based films, with a specific emphasis on their classification, properties, and applications. Specifically, this review classifies cellulose according to the various morphologies of cellulose (e.g., nanocrystals, nanospheres, and hollow ring cellulose) and cellulose derivatives (e.g., methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, and cellulose acetate). The subsequent section presents an analysis of cellulose-based films with improved mechanical properties, antibacterial characteristics, gas regulation, and hydrophobicity. A detailed discussion of the mechanisms that underlie these properties is provided. Additionally, representative applications of cellulosic composites, such as food packaging, medical supplies, and electronic devices, are summarized. Finally, the challenges faced by cellulosic materials are outlined, and a novel and feasible prospect is proposed to accelerate the future development of this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All the data was used after the permission.

References

  1. Jiang F, Li T, Li Y, Zhang Y, Gong A, Dai J, Hitz E, Luo W, Hu L. Wood-based nanotechnologies toward sustainability. Adv Mater. 2018;30:1703453.

    Article  Google Scholar 

  2. Liu W, Liu K, Du H, Zheng T, Zhang N, Xu T, Pang B, Zhang X, Si C, Zhang K. Cellulose nanopaper: Fabrication, functionalization, and applications. Nano-Micro Lett. 2022;14:104.

    Article  CAS  Google Scholar 

  3. Su Z, Yang Y, Huang Q, Chen R, Ge W, Fang Z, Huang F, Wang X. Designed biomass materials for “green” electronics: A review of materials, fabrications, devices, and perspectives. Prog Mater Sci. 2022;125: 100917.

    Article  CAS  Google Scholar 

  4. Leppänen I, Lappalainen T, Lohtander T, Jonkergouw C, Arola S, Tammelin T. Capturing colloidal nano- and microplastics with plant-based nanocellulose networks. Nat Commun. 2022;13:1814.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yeom J, Choe A, Lee J, Kim J, Kim J, Oh SH, Park C, Na S, Shin Y-E, Lee Y, Ro YG, Kwak SK, Ko H. Photosensitive ion channels in layered MXene membranes modified with plasmonic gold nanostars and cellulose nanofibers. Nat Commun. 2023;14:359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yin R, Yang S, Li Q, Zhang S, Liu H, Han J, Liu C, Shen C. Flexible conductive Ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications. Sci Bull. 2020;65:899.

    Article  CAS  Google Scholar 

  7. Liao SY, Wang XY, Li XM, Wan YJ, Zhao T, Hu YG, Zhu PL, Sun R, Wong CP. Flexible liquid metal/cellulose nanofiber composites film with excellent thermal reliability for highly efficient and broadband EMI shielding. Chem Eng J. 2021;422: 129962.

    Article  CAS  Google Scholar 

  8. Chen F, Xiang W, Sawada D, Bai L, Hummel M, Sixta H, Budtova T. Exploring large ductility in cellulose nanopaper combining high toughness and strength. ACS Nano. 2020;14:11150.

    Article  CAS  PubMed  Google Scholar 

  9. Zhu W, Droguet B, Shen Q, Zhang Y, Parton TG, Shan X, Parker RM, De Volder MFL, Deng T, Vignolini S, Li T. Structurally colored radiative cooling cellulosic films. Adv Sci. 2022;9:2202061.

    Article  CAS  Google Scholar 

  10. Cho H, Shakil A, Polycarpou AA, Kim S. Enabling selectively tunable mechanical properties of graphene oxide/silk fibroin/cellulose nanocrystal bionanofilms. ACS Nano. 2021;15:19546.

    Article  CAS  PubMed  Google Scholar 

  11. Isogai A, Zhou Y. Diverse nanocelluloses prepared from TEMPO-oxidized wood cellulose fibers: Nanonetworks, nanofibers, and nanocrystals. Curr Opin Solid State Mater Sci. 2019;23:101.

    Article  CAS  Google Scholar 

  12. Yang W, Pan M, Zhang J, Zhang L, Lin F, Liu X, Huang C, Chen XZ, Wang J, Yan B, Zeng H. A universal strategy for constructing robust and antifouling cellulose nanocrystal coating. Adv Funct Mater. 2022;32:2109989.

    Article  CAS  Google Scholar 

  13. Graham SA, Dudem B, Mule AR, Patnam H, Yu JS. Engineering squandered cotton into eco-benign microarchitectured triboelectric films for sustainable and highly efficient mechanical energy harvesting. Nano Energy. 2019;61:505.

    Article  CAS  Google Scholar 

  14. Li X, Peng Y, Zhang F, Yang Z, Dong Z. Fast-response, no-pretreatment, and robustness air-water/oil amphibious superhydrophilic-superoleophobic surface for oil/water separation and oil-repellent fabrics. Chem Eng J. 2022;427: 132043.

    Article  CAS  Google Scholar 

  15. Liu H, Pang B, Tang Q, Müller M, Zhang H, Dervişoğlu R, Zhang K. Self-assembly of surface-acylated cellulose nanowhiskers and graphene oxide for multiresponsive janus-like films with time-dependent dry-state structures. Small. 2020;16:2004922.

    Article  CAS  Google Scholar 

  16. Sun WB, Han ZM, Yue X, Zhang HY, Yang KP, Liu ZX, Li DH, Zhao YX, Ling ZC, Yang HB, Guan QF, Yu SH. Nacre-inspired bacterial cellulose/mica nanopaper with excellent mechanical and electrical insulating properties by biosynthesis. Adv Mater. 2023;35:2300241.

    Article  CAS  Google Scholar 

  17. Fu J, Wang H, Xiao P, Zeng C, Sun Q, Li H. A high strength, anti-corrosion and sustainable separator for aqueous zinc-based battery by natural bamboo cellulose. Energy Stor Mater. 2022;48:191.

    Google Scholar 

  18. Wang H, Fu J, Wang C, Wang J, Yang A, Li C, Sun Q, Cui Y, Li H. A binder-free high silicon content flexible anode for Li-ion batteries. Energy Environ Sci. 2020;13:848.

    Article  CAS  Google Scholar 

  19. Osorio M, Posada L, Martínez E, Estrada V, Quintana G, Maldonado ME, Peresin S, Orozco J, Castro C. Bacterial nanocellulose spheres coated with meta acrylic copolymer: Vaccinium meridionale swartz extract delivery for colorectal cancer chemoprevention. Food Hydrocoll. 2024;147: 109310.

    Article  CAS  Google Scholar 

  20. Xu Y, Gao M, Zhang Y, Ning L, Zhao D, Ni Y. Cellulose hollow annular nanoparticles prepared from high-intensity ultrasonic treatment. ACS Nano. 2022;16:8928.

    Article  CAS  PubMed  Google Scholar 

  21. Wang T, Li S, Tao X, Yan Q, Wang X, Chen Y, Huang F, Li H, Chen X, Bian Z. Fully biodegradable water-soluble triboelectric nanogenerator for human physiological monitoring. Nano Energy. 2022;93: 106787.

    Article  CAS  Google Scholar 

  22. Coughlin ML, Liberman L, Ertem SP, Edmund J, Bates FS, Lodge TP. Methyl cellulose solutions and gels: fibril formation and gelation properties. Prog Polym Sci. 2021;112: 101324.

    Article  CAS  Google Scholar 

  23. Wu Z, Zhang T, Wang B, Ji P, Sheng N, Zhang M, Liang Q, Chen S, Wang H. Scalable bacterial cellulose biofilms with improved ion transport for high osmotic power generation. Nano Energy. 2021;88: 106275.

    Article  CAS  Google Scholar 

  24. Cheng Y, Zhu W, Lu X, Wang C. Lightweight and flexible MXene/carboxymethyl cellulose aerogel for electromagnetic shielding, energy harvest and self-powered sensing. Nano Energy. 2022;98: 107229.

    Article  CAS  Google Scholar 

  25. Xiong J, Li S, Ye Y, Wang J, Qian K, Cui P, Gao D, Lin MF, Chen T, Lee PS. A deformable and highly robust ethyl cellulose transparent conductor with a scalable silver nanowires bundle micromesh. Adv Mater. 2018;30:1802803.

    Article  Google Scholar 

  26. Cao D, Li Q, Sun X, Wang Y, Zhao X, Cakmak E, Liang W, Anderson A, Ozcan S, Zhu H. Amphipathic binder integrating ultrathin and highly ion-conductive sulfide membrane for cell-level high-energy-density all-solid-state batteries. Adv Mater. 2021;33:2105505.

    Article  CAS  Google Scholar 

  27. Lamanna L, Pace G, Ilic IK, Cataldi P, Viola F, Friuli M, Galli V, Demitri C, Caironi M. Edible cellulose-based conductive composites for triboelectric nanogenerators and supercapacitors. Nano Energy. 2023;108: 108168.

    Article  CAS  Google Scholar 

  28. Dai S, Li X, Jiang C, Zhang Q, Peng B, Ping J, Ying Y. Omnidirectional wind energy harvester for self-powered agro-environmental information sensing. Nano Energy. 2022;91: 106686.

    Article  CAS  Google Scholar 

  29. Angelica NE, Sui X, Ifat KA, Linda JWS, Leitus G, Cohen E, Weissman H, Wagner HD, Rybtchinski B. Modular molecular nanoplastics. ACS Nano. 2019;13:11097.

    Article  Google Scholar 

  30. Chan CLC, Bay MM, Jacucci G, Vadrucci R, Williams CA, van de Kerkhof GT, Parker RM, Vynck K, Bruno F, Vignolini S. Visual appearance of chiral nematic cellulose-based photonic films: Angular and polarization independent color response with a twist. Adv Mater. 2019;31:1905151.

    Article  CAS  Google Scholar 

  31. Bai L, Jin Y, Shang X, Jin H, Zhou Y, Shi L. Highly synergistic, electromechanical and mechanochromic dual-sensing ionic skin with multiple monitoring, antibacterial, self-healing, and anti-freezing functions. J Mater Chem A. 2021;9:23916.

    Article  CAS  Google Scholar 

  32. Yang K, Chen M, Wang Q, Grebenchuk S, Chen S, Leng X, Novoselov KS, Andreeva DV. Electro-thermo controlled water valve based on 2D graphene–cellulose hydrogels. Adv Funct Mater. 2022;32:2201904.

    Article  CAS  Google Scholar 

  33. Xue JH, Xiang HJ, Zhang YR, Yang J, Cao X, Wang ZL. Characteristic study of self-powered sensors based on native protein composite film. Energy Environ Mater. 2023;6: e12492.

    Google Scholar 

  34. Jia R, Tian W, Bai H, Zhang J, Wang S, Zhang J. Amine-responsive cellulose-based ratiometric fluorescent materials for real-time and visual detection of shrimp and crab freshness. Nat Commun. 2019;10:795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang X, Zhang Q, Wang S, Jin C, Zhu B, Su Y, Dong X, Liang J, Lu Z, Zhou L, Li W, Zhu S, Zhu J. Sub-ambient full-color passive radiative cooling under sunlight based on efficient quantum-dot photoluminescence. Sci Bull. 2022;67:1874.

    Article  CAS  Google Scholar 

  36. Zhang X, Cheng Y, You J, Zhang J, Yin C, Zhang J. Ultralong phosphorescence cellulose with excellent anti-bacterial, water-resistant and ease-to-process performance. Nat Commun. 2022;13:1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thongsomboon W, Serra DO, Possling A, Hadjineophytou C, Hengge R, Cegelski L. Phosphoethanolamine cellulose: A naturally produced chemically modified cellulose. Science. 2018;359:334.

    Article  CAS  PubMed  Google Scholar 

  38. Li Z, Zhang Y, Anankanbil S, Guo Z. Applications of nanocellulosic products in food: Manufacturing processes, structural features and multifaceted functionalities. Trends Food Sci Technol. 2021;113:277.

    Article  CAS  Google Scholar 

  39. Fang Z, Li B, Liu Y, Zhu J, Li G, Hou G, Zhou J, Qiu X. Critical role of degree of polymerization of cellulose in super-strong nanocellulose films. Matter. 2020;2:1000.

    Article  Google Scholar 

  40. Wang J, Niu J, Sawada T, Shao Z, Serizawa T. A bottom-up synthesis of vinyl-cellulose nanosheets and their nanocomposite hydrogels with enhanced strength. Biomacromol. 2017;18:4196.

    Article  CAS  Google Scholar 

  41. Dufresne A. Cellulose nanomaterial reinforced polymer nanocomposites. Curr Opin Colloid Interface Sci. 2017;29:1.

    Article  CAS  Google Scholar 

  42. Liu Y, Lu Y, Zhang H, Liu X, Kong Z, Zhou L, Liu H, Zhang J. Polymer grafting on cellulose nanocrystals initiated by ceric ammonium nitrate: Is it feasible under acid-free conditions? Green Chem. 2021;23:8581.

    Article  CAS  Google Scholar 

  43. Tang J, Sisler J, Grishkewich N, Tam KC. Functionalization of cellulose nanocrystals for advanced applications. J Colloid Interface Sci. 2017;494:397.

    Article  CAS  PubMed  Google Scholar 

  44. Patel DK, Ganguly K, Dutta SD, Patil TV, Lim KT. Cellulose nanocrystals vs. cellulose nanospheres: A comparative study of cytotoxicity and macrophage polarization potential. Carbohydr Polym. 2023;303: 120464.

    Article  CAS  PubMed  Google Scholar 

  45. Erdal NB, Hakkarainen M. Degradation of cellulose derivatives in laboratory, man-made, and natural environments. Biomacromol. 2022;23:2713.

    Article  CAS  Google Scholar 

  46. Cheng KC, Catchmark JM, Demirci A. Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromol. 2011;12:730.

    Article  CAS  Google Scholar 

  47. Chen HH, Chen LC, Huang HC, Lin SB. In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of Gluconacetobacter xylinus. Cellulose. 2011;18:1573.

    Article  CAS  Google Scholar 

  48. Lin Z, Fu H, Zhang Y, Deng Y, Wei F, Li H, Xu C, Hua F, Lin B. Enhanced antibacterial effect and biodegradation of coating via dual-in-situ growth based on carboxymethyl cellulose. Carbohydr Polym. 2023;302: 120433.

    Article  CAS  PubMed  Google Scholar 

  49. Sathishbabu P, Hani U. Development and evaluation of carrier oils encapsulated silver doped zinc oxide nanoparticles loaded bio-plastic composites towards anti-microbial packaging applications. Inorg Chem Commun. 2023;153: 110763.

    Article  CAS  Google Scholar 

  50. Zhang W, Han X, You J, Zhang X, Pei D, Willför S, Li M, Xu C, Li C. Rapid and manual-shaking exfoliation of amidoximated cellulose nanofibrils for a large-capacity filtration capture of uranium. J Mater Chem A. 2022;10:7920.

    Article  CAS  Google Scholar 

  51. Konwar G, Rahi S, Tiwari SP. Decomposable flexible organic transistors with a cellulose-based gate dielectric and substrate for biodegradable electronics. ACS Appl Mater Interfaces. 2023;15:35261.

    Article  CAS  PubMed  Google Scholar 

  52. Dang C, Shao C, Liu H, Chen Y, Qi H. Cellulose melt processing assisted by small biomass molecule to fabricate recyclable ionogels for versatile stretchable triboelectric nanogenerators. Nano Energy. 2021;90: 106619.

    Article  CAS  Google Scholar 

  53. Saraiva S, Pereira P, Paula CT, Rebelo RC, Coelho JFJ, Serra AC, Fonseca AC. Development of electrospun mats based on hydrophobic hydroxypropyl cellulose derivatives. Mater Sci Eng C. 2021;131: 112498.

    Article  CAS  Google Scholar 

  54. Di Filippo MF, Dolci LS, Liccardo L, Bigi A, Bonvicini F, Gentilomi GA, Passerini N, Panzavolta S, Albertini B. Cellulose derivatives-snail slime films: New disposable eco-friendly materials for food packaging. Food Hydrocoll. 2021;111: 106247.

    Article  Google Scholar 

  55. Hazarika KK, Konwar A, Borah A, Saikia A, Barman P, Hazarika S. Cellulose nanofiber mediated natural dye based biodegradable bag with freshness indicator for packaging of meat and fish. Carbohydr Polym. 2023;300: 120241.

    Article  CAS  PubMed  Google Scholar 

  56. Dou J, Karakoç A, Johansson LS, Hietala S, Evtyugin D, Vuorinen T. Mild alkaline separation of fiber bundles from eucalyptus bark and their composites with cellulose acetate butyrate. Ind Crops Prod. 2021;165: 113436.

    Article  CAS  Google Scholar 

  57. Tan HL, Kai D, Pasbakhsh P, Teow SY, Lim YY, Pushpamalar J. Electrospun cellulose acetate butyrate/polyethylene glycol (CAB/PEG) composite nanofibers: A potential scaffold for tissue engineering. Colloids Surf B. 2020;188: 110713.

    Article  CAS  Google Scholar 

  58. Li DH, Han ZM, He Q, Yang KP, Sun WB, Liu HC, Zhao YX, Liu ZX, Zong CN, Yang HB, Guan QF, Yu SH. Ultrastrong, thermally stable, and food-safe seaweed-based structural material for tableware. Adv Mater. 2023;35: e2208098.

    Article  PubMed  Google Scholar 

  59. Yang J, Lu X, Zhang Y, Xu J, Yang Y, Zhou Q. A facile ionic liquid approach to prepare cellulose fiber with good mechanical properties directly from corn stalks. Green Energy Environ. 2020;5:223.

    Article  Google Scholar 

  60. Yang Q, Guo J, Liu Y, Guan F, Song J, Gong X. Improved properties of cellulose/Antarctic krill protein composite fibers with a multiple cross-linking network. Adv Fiber Mater. 2022;4:256.

    Article  CAS  Google Scholar 

  61. Yang H, Liu Z, Yin C, Han Z, Guan Q, Zhao Y, Ling Z, Liu H, Yang K, Sun W, Yu S. Edible, ultrastrong, and microplastic-free bacterial cellulose-based straws by biosynthesis. Adv Funct Mater. 2022;32:2111713.

    Article  CAS  Google Scholar 

  62. Li Z, Chen C, Mi R, Gan W, Dai J, Jiao M, Xie H, Yao Y, Xiao S, Hu L. A strong, tough, and scalable structural material from fast-growing bamboo. Adv Mater. 2020;32: e1906308.

    Article  PubMed  Google Scholar 

  63. Scurlock JMO, Dayton DC, Hames B. Bamboo: An overlooked biomass resource? Biomass Bioenergy. 2000;19:229.

    Article  CAS  Google Scholar 

  64. Li Z, Chen C, Xie H, Yao Y, Zhang X, Brozena A, Li J, Ding Y, Zhao X, Hong M, Qiao H, Smith LM, Pan X, Briber R, Shi SQ, Hu L. Sustainable high-strength macrofibres extracted from natural bamboo. Nat Sustain. 2021;5:235.

    Article  Google Scholar 

  65. Volova TG, Prudnikova SV, Kiselev EG, Nemtsev IV, Vasiliev AD, Kuzmin AP, Shishatskaya EI. Bacterial cellulose (BC) and BC composites: Production and properties. Nanomaterials. 2022;12:192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jawaid M, Chee SS, Asim M, Saba N, Kalia S. Sustainable kenaf/bamboo fibers/clay hybrid nanocomposites: properties, environmental aspects and applications. J Clean Prod. 2022;330: 129938.

    Article  CAS  Google Scholar 

  67. Lin N, Dufresne A. Nanocellulose in biomedicine: Current status and future prospect. Eur Polym J. 2014;59:302.

    Article  CAS  Google Scholar 

  68. Wang Z, Hu W, Wang W, Xiao Y, Chen Y, Wang X. Antibacterial electrospun nanofibrous materials for wound healing. Adv Fiber Mater. 2023;5:107.

    Article  CAS  Google Scholar 

  69. Xie Y, Qiao K, Yue L, Tang T, Zheng Y, Zhu S, Yang H, Fang Z. A self-crosslinking, double-functional group modified bacterial cellulose gel used for antibacterial and healing of infected wound. Bioact Mater. 2022;17:248.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu X, Wu M, Wang M, Hu Q, Liu J, Duan Y, Liu B. Direct synthesis of photosensitizable bacterial cellulose as engineered living material for skin wound repair. Adv Mater. 2022;34: e2109010.

    Article  PubMed  Google Scholar 

  71. Abral H, Ariksa J, Mahardika M, Handayani D, Aminah I, Sandrawati N, Pratama AB, Fajri N, Sapuan SM, Ilyas RA. Transparent and antimicrobial cellulose film from ginger nanofiber. Food Hydrocoll. 2020;98: 105266.

    Article  CAS  Google Scholar 

  72. Hu S, Li Y, Peng F, Ou J, Guo L, Chen Y, Li Y, Yue F, Qi H. Plant-inspired modification strategy for the large-scale, versatile preparation of cellulose-based products with highly effective and durable UV-protective, antimicrobial, and antiviral performance. Chem Eng J. 2023;475: 146164.

    Article  CAS  Google Scholar 

  73. Jung S, Cui Y, Barnes M, Satam C, Zhang S, Chowdhury RA, Adumbumkulath A, Sahin O, Miller C, Sajadi SM, Sassi LM, Ji Y, Bennett MR, Yu M, Friguglietti J, Merchant FA, Verduzco R, Roy S, Vajtai R, Meredith JC, Youngblood JP, Koratkar N, Rahman MM, Ajayan PM. Multifunctional bio-nanocomposite coatings for perishable fruits. Adv Mater. 2020;32: e1908291.

    Article  PubMed  Google Scholar 

  74. Kim T, Tran TH, Hwang SY, Park J, Oh DX, Kim B-S. Crab-on-a-tree: All biorenewable, optical and radio frequency transparent barrier nanocoating for food packaging. ACS Nano. 2019;13:3796.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang W, Zhao J, Cai C, Qin Y, Meng X, Liu Y, Nie S. Gas-sensitive cellulosic triboelectric materials for self-powered ammonia sensing. Adv Sci. 2022;9: e2203428.

    Article  Google Scholar 

  76. Cho S, Yu H, Choi J, Kang H, Park S, Jang J, Hong H, Kim I, Lee S, Jeong HS, Jung H. Continuous meter-scale synthesis of weavable tunicate cellulose/carbon nanotube fibers for high-performance wearable sensors. ACS Nano. 2019;13:9332.

    Article  CAS  PubMed  Google Scholar 

  77. Yu XF, Li YC, Cheng JB, Liu ZB, Li QZ, Li WZ, Yang X, Xiao B. Monolayer Ti2CO2: A promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl Mater Interfaces. 2015;7:13707.

    Article  CAS  PubMed  Google Scholar 

  78. Yu X, Yu Z, Zhang X, Li P, Sun B, Gao X, Yan K, Liu H, Duan Y, Gao M, Wang G, Yu S. Highly disordered cobalt oxide nanostructure induced by sulfur incorporation for efficient overall water splitting. Nano Energy. 2020;71: 104652.

    Article  CAS  Google Scholar 

  79. Wang X, Guo J, Ren H, Jin J, He H, Jin P, Wu Z, Zheng Y. Research progress of nanocellulose-based food packaging. Trends Food Sci Technol. 2024;143: 104289.

    Article  CAS  Google Scholar 

  80. Yue C, Wang M, Zhou Z, You Y, Wang G, Wu D. Cellulose-based intelligent packaging films with antibacterial, UV-blocking, and biodegradable properties for shrimp freshness monitoring. Chem Eng J. 2024;488: 150975.

    Article  CAS  Google Scholar 

  81. Ghimire S, Flury M, Scheenstra EJ, Miles CA. Sampling and degradation of biodegradable plastic and paper mulches in field after tillage incorporation. Sci Total Environ. 2020;703: 135577.

    Article  CAS  PubMed  Google Scholar 

  82. Zhou H, Li Q, Zhang Z, Wang X, Niu H. Recent advances in superhydrophobic and antibacterial cellulose-based fibers and fabrics: Bio-inspiration, strategies, and applications. Adv Fiber Mater. 2023;5:1555.

    Article  CAS  Google Scholar 

  83. Wang Y, Zhao W, Han M, Guan L, Han L, Hemraj A, Tam KC. Sustainable superhydrophobic surface with tunable nanoscale hydrophilicity for water harvesting applications. Angew Chem Int Ed. 2022;61: e202115238.

    Article  CAS  Google Scholar 

  84. Sun Q, Wang D, Li Y, Zhang J, Ye S, Cui J, Chen L, Wang Z, Butt H-J, Vollmer D, Deng X. Surface charge printing for programmed droplet transport. Nat Mater. 2019;18:936.

    Article  CAS  PubMed  Google Scholar 

  85. Wang Y, Di J, Wang L, Li X, Wang N, Wang B, Tian Y, Jiang L, Yu J. Infused-liquid-switchable porous nanofibrous membranes for multiphase liquid separation. Nat Commun. 2017;8:575.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhao J, Zhu W, Wang X, Liu L, Yu J, Ding B. Fluorine-free waterborne coating for environmentally friendly, robustly water-resistant, and highly breathable fibrous textiles. ACS Nano. 2020;14:1045.

    Article  CAS  PubMed  Google Scholar 

  87. Chen K, Li Y, Yang G, Hu S, Shi Z, Yang G. Fabric-based TENG woven with bio-fabricated superhydrophobic bacterial cellulose fiber for energy harvesting and motion detection. Adv Funct Mater. 2023;33:2304809.

    Article  CAS  Google Scholar 

  88. Huang S, Zhang X, Qian X, Ni Y, He Z, Sheng L, Shen J. Rice-leaf-mimetic cellulosic paper as a substrate for rewritable devices and biolubricant-infused “slippery” surfaces. Chem Eng J. 2024;486: 150073.

    Article  CAS  Google Scholar 

  89. Baetens R, Jelle BP, Gustavsen A. Aerogel insulation for building applications: A state-of-the-art review. Energy Build. 2011;43:761.

    Article  Google Scholar 

  90. Zong D, Zhang X, Yin X, Wang F, Yu J, Zhang S, Ding B. Electrospun fibrous sponges: Principle, fabrication, and applications. Adv Fiber Mater. 2022;4:1434.

    Article  Google Scholar 

  91. Hou Y, Liao J, Huang L, Guo S, Zhang Y, Liu Z, Mo L, Zhang X, Li J. Plant bio-inspired laminar cellulose-based foam with flame retardant, thermal insulation and excellent mechanical properties. J Mater Chem A. 2023;11:1138.

    Article  CAS  Google Scholar 

  92. Wang H, Zhang R, Yuan D, Xu S, Wang L. Gas foaming guided fabrication of 3D porous plasmonic nanoplatform with broadband absorption, tunable shape, excellent stability, and high photothermal efficiency for solar water purification. Adv Funct Mater. 2020;30:2003995.

    Article  CAS  Google Scholar 

  93. Lin Y, Xu H, Shan X, Di Y, Zhao A, Hu Y, Gan Z. Solar steam generation based on the photothermal effect: From designs to applications, and beyond. J Mater Chem A. 2019;7:19203.

    Article  CAS  Google Scholar 

  94. Chang J, Pang B, Zhang H, Pang K, Zhang M, Yuan J. MXene/cellulose composite cloth for integrated functions (if-cloth) in personal heating and steam generation. Adv Fiber Mater. 2024;6:252.

    Article  PubMed  Google Scholar 

  95. Lin X, Wang P, Hong R, Zhu X, Liu Y, Pan X, Qiu X, Qin Y. Fully lignocellulosic biomass-based double-layered porous hydrogel for efficient solar steam generation. Adv Funct Mater. 2022;32:2209262.

    Article  CAS  Google Scholar 

  96. Meng S, Tang CY, Jia J, Yang J, Yang MB, Yang W. A wave-driven piezoelectric solar evaporator for water purification. Adv Energy Mater. 2022;12:2200087.

    Article  CAS  Google Scholar 

  97. Luo B, Wen J, Wang H, Zheng S, Liao R, Chen W, Mahian O, Li X. A biomass-based hydrogel evaporator modified through dynamic regulation of water molecules: Highly efficient and cost-effective. Energy Environ Mater. 2022;5:1.

    CAS  Google Scholar 

  98. Yang H, Jacucci G, Schertel L, Vignolini S. Cellulose-based scattering enhancers for light management applications. ACS Nano. 2022;16:7373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cao X, Hou C, Li Y, Li K, Zhang Q, Wang H. MXenes-based functional fibers and their applications in the intelligent wearable field. Acta Phys Chim Sin. 2022;38:2204058.

    Article  Google Scholar 

  100. Lee S, An G. Interface engineering of carbon fiber-based electrode for wearable energy storage devices. Adv Fiber Mater. 2023;5:1749.

    Article  CAS  Google Scholar 

  101. Lee B, Oh JY, Cho H, Joo CW, Yoon H, Jeong S, Oh E, Byun J, Kim H, Lee S, Seo J, Park CW, Choi S, Park NM, Kang SY, Hwang CS, Ahn SD, Lee JI, Hong Y. Ultraflexible and transparent electroluminescent skin for real-time and super-resolution imaging of pressure distribution. Nat Commun. 2020;11:663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gong S, Schwalb W, Wang Y, Chen Y, Tang Y, Si J, Shirinzadeh B, Cheng W. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun. 2014;5:3132.

    Article  PubMed  Google Scholar 

  103. Wei Y, Chen S, Lin Y, Yuan X, Liu L. Silver nanowires coated on cotton for flexible pressure sensors. J Mater Chem C. 2016;4:935.

    Article  CAS  Google Scholar 

  104. Zhan Z, Lin R, Tran V, An J, Wei Y, Du H, Tran T, Lu W. Paper/carbon nanotubebased wearable pressure sensor for physiological signal acquisition and soft robotic skin. ACS Appl Mater Interfaces. 2017;9:37921.

    Article  CAS  PubMed  Google Scholar 

  105. Tao L, Zhang K, Tian H, Liu Y, Wang D, Chen Y, Yang Y, Ren T. Graphene-paper pressure sensor for detecting human motions. ACS Nano. 2017;11:8790.

    Article  CAS  PubMed  Google Scholar 

  106. Choi H, Sun J, Ren B, Cha S, Lee J, Lee B, Park J, Choi J, Park J. 3D textile structure-induced local strain for a highly amplified piezoresistive performance of carbonized cellulose fabric based pressure sensor for human healthcare monitoring. Chem Eng J. 2022;450: 138193.

    Article  CAS  Google Scholar 

  107. Chen C, Wu Q, Wan Z, Yang Q, Xu Z, Li D, Jin Y, Rojas OJ. Mildly processed chitin used in one-component drinking straws and single use materials: Strength, biodegradability and recyclability. Chem Eng J. 2022;442: 136173.

    Article  CAS  Google Scholar 

  108. Wang X, Pang Z, Chen C, Xia Q, Zhou Y, Jing S, Wang R, Ray U, Gan W, Li C, Chen G, Foster B, Li T, Hu L. All-natural, degradable, rolled-up straws based on cellulose micro- and nano-hybrid fibers. Adv Funct Mater. 2020;30:1910417.

    Article  CAS  Google Scholar 

  109. Kwak H, Kim H, Park SA, Lee M, Jang M, Park SB, Hwang SY, Kim HJ, Jeon H, Koo JM, Park J, Oh DX. Biodegradable, water-resistant, anti-fizzing, polyester nanocellulose composite paper straws. Adv Sci. 2022;10: e2205554.

    Article  Google Scholar 

  110. Liu J, Wang C, Ewulonu CM, Chen X, Wu M, Huang Y. Fabrication of superhydrophobic and degradable cellulose paper materials for straw application. Cellulose. 2021;29:527.

    Article  CAS  Google Scholar 

  111. Sun P, Wang S, Huang Z, Zhang L, Dong F, Xu X, Liu H. Water-resistant, strong, degradable and recyclable rosin-grafted cellulose composite paper. Green Chem. 2022;24:7519.

    Article  CAS  Google Scholar 

  112. Thanh Uyen NT, Abdul Hamid ZA, Thi LA, Ahmad NB. Synthesis and characterization of curcumin loaded alginate microspheres for drug delivery. J Drug Deliv Sci Technol. 2020;58: 101796.

    Article  CAS  Google Scholar 

  113. Xu XY, Lian X, Hao JN, Zhang C, Yan B. A Double-stimuli-responsive fluorescent center for monitoring of food spoilage based on dye covalently modified EuMOFs: From sensory hydrogels to logic devices. Adv Mater. 2017;29:1702298.

    Article  Google Scholar 

  114. Gomes V, Pires AS, Mateus N, de Freitas V, Cruz L. Pyranoflavylium-cellulose acetate films and the glycerol effect towards the development of pH-freshness smart label for food packaging. Food Hydrocoll. 2022;127: 107501.

    Article  CAS  Google Scholar 

  115. Widmer S, Dorrestijn M, Camerlo A, Urek SK, Lobnik A, Housecroft CE, Constable EC, Scherer LJ. Coumarin meets fluorescein: A Forster resonance energy transfer enhanced optical ammonia gas sensor. Analyst. 2014;139:4335.

    Article  CAS  PubMed  Google Scholar 

  116. Xiong Y, Shen Y, Tian L, Hu Y, Zhu P, Sun R, Wong C-P. A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring. Nano Energy. 2020;70: 104436.

    Article  CAS  Google Scholar 

  117. Zhu T, Ni Y, Zhao K, Huang J, Cheng Y, Ge M, Park C, Lai Y. A breathable knitted fabric-based smart system with enhanced superhydrophobicity for drowning alarming. ACS Nano. 2022;16:18018.

    Article  CAS  PubMed  Google Scholar 

  118. Zhang Y, Lu H, Liang X, Zhang M, Liang H, Zhang Y. Silk materials for intelligent fibers and textiles: Potential, progress and future perspective. Acta Phys Chim Sin. 2022;38:2103034.

    Google Scholar 

  119. Jiang W, Li T, Hussain B, Zhou S, Wang Z, Peng Y, Hu J, Zhang K. Facile fabrication of cotton-based thermoelectric yarns for the construction of textile generator with high performance in human heat harvesting. Adv Fiber Mater. 2023;5:1725.

    Article  CAS  Google Scholar 

  120. Zhao X, Wang LY, Tang CY, Zha XJ, Liu Y, Su BH, Ke K, Bao RY, Yang MB, Yang W. Smart Ti3C2Tx MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applications. ACS Nano. 2020;14:8793.

    Article  CAS  PubMed  Google Scholar 

  121. Ning C, Cheng R, Jiang Y, Sheng F, Yi J, Shen S, Zhang Y, Peng X, Dong K, Wang ZL. Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoring. ACS Nano. 2022;16:2811.

    Article  CAS  PubMed  Google Scholar 

  122. Yang Y, Yang Y, Huang J, Li S, Meng Z, Cai W, Lai Y. Electrospun nanocomposite fibrous membranes for sustainable face mask based on triboelectric nanogenerator with high air filtration efficiency. Adv Fiber Mater. 2023;5:1505.

    Article  CAS  Google Scholar 

  123. Zhang H, Yang Y, Su Y, Chen J, Adams K, Lee S, Hu C, Wang ZL. Triboelectric nanogenerator for harvesting vibration energy in full space and as self-powered acceleration sensor. Adv Funct Mater. 2014;24:1401.

    Article  CAS  Google Scholar 

  124. Zhang C, Mo J, Fu Q, Liu Y, Wang S, Nie S. Wood-cellulose-fiber-based functional materials for triboelectric nanogenerators. Nano Energy. 2021;81: 105637.

    Article  CAS  Google Scholar 

  125. Fu Q, Liu Y, Liu T, Mo J, Zhang W, Zhang S, Luo B, Wang J, Qin Y, Wang S, Nie S. Air-permeable cellulosic triboelectric materials for self-powered healthcare products. Nano Energy. 2022;102: 107739.

    Article  CAS  Google Scholar 

  126. Zhang Y, Yuan S, Feng X, Li H, Zhou J, Wang B. Preparation of nanofibrous metal–organic framework filters for efficient air pollution control. JACS. 2016;138:5785.

    Article  CAS  Google Scholar 

  127. Yoo DK, Woo HC, Jhung SH. Removal of particulate matter with metal–organic framework-incorporated materials. Coord Chem Rev. 2020;422: 213477.

    Article  CAS  Google Scholar 

  128. Wang C, Li J, Lv X, Zhang Y, Guo G. Photocatalytic organic pollutants degradation in metal–organic frameworks. Energy Environ Sci. 2014;7:2831.

    Article  CAS  Google Scholar 

  129. Zhu T, Liu L, Huang J, Li S, Lei Y, Cai W, Lai Y, Li H. Multifunctional hydrophobic fabric-based strain sensor for human motion detection and personal thermal management. J Mater Sci Technol. 2023;138:108.

    Article  Google Scholar 

  130. Admassie S, Ajjan FN, Elfwing A, Inganäs O. Biopolymer hybrid electrodes for scalable electricity storage. Mater Horiz. 2016;3:174.

    Article  CAS  Google Scholar 

  131. Ni Q, Kim B, Wu C, Kang K. Non-electrode components for rechargeable aqueous Zinc batteries: Electrolytes, solid-electrolyte-interphase, current collectors, binders, and separators. Adv Mater. 2022;34: e2108206.

    Article  PubMed  Google Scholar 

  132. Zhu X, Jiang X, Liu X, Xiao L, Cao Y. A green route to synthesize low-cost and high-performance hard carbon as promising sodium-ion battery anodes from sorghum stalk waste. Green Energy Environ. 2017;2:310.

    Article  Google Scholar 

  133. Wang Z, Lee YH, Kim SW, Seo JY, Lee SY, Nyholm L. Why cellulose-based electrochemical energy storage devices? Adv Mater. 2021;33: e2000892.

    Article  PubMed  Google Scholar 

  134. Zhang X, Li J, Liu D, Liu M, Zhou T, Qi K, Shi L, Zhu Y, Qian Y. Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy Environ Sci. 2021;14:3120.

    Article  CAS  Google Scholar 

  135. Yuksel R, Buyukcakir O, Seong WK, Ruoff RS. Metal-organic framework integrated anodes for aqueous zinc-ion batteries. Adv Energy Mater. 2020;10:1904215.

    Article  CAS  Google Scholar 

  136. Jia H, Liu K, Lam Y, Tawiah B, Xin JH, Nie W, Jiang S. Fiber-based materials for aqueous zinc ion batteries. Adv Fiber Mater. 2023;5:36.

    Article  CAS  Google Scholar 

  137. Chayambuka K, Mulder G, Danilov DL, Notten PHL. From li-ion batteries toward na-ion chemistries: Challenges and opportunities. Adv Energy Mater. 2020;10:2001310.

    Article  CAS  Google Scholar 

  138. Yan J, Wang Q, Wei T, Fan Z. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater. 2014;4:1300816.

    Article  Google Scholar 

  139. Wang Y, Song Y, Xia Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem Soc Rev. 2016;45:5925.

    Article  CAS  PubMed  Google Scholar 

  140. Wang F, Wu X, Yuan X, Liu Z, Zhang Y, Fu L, Zhu Y, Zhou Q, Wu Y, Huang W. Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev. 2017;46:6816.

    Article  CAS  PubMed  Google Scholar 

  141. Guo X, Zhang X, Wang Y, Tian X, Qiao Y. Converting furfural residue wastes to carbon materials for high performance supercapacitor. Green Energy Environ. 2022;7:1270.

    Article  CAS  Google Scholar 

  142. Wang K, Zhang X, Li C, Sun X, Meng Q, Ma Y, Wei Z. Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performance. Adv Mater. 2015;27:7451.

    Article  CAS  PubMed  Google Scholar 

  143. Wang Z, Li H, Tang Z, Liu Z, Ruan Z, Ma L, Yang Q, Wang D, Zhi C. Hydrogel electrolytes for flexible aqueous energy storage devices. Adv Funct Mater. 2018;28:1804560.

    Article  Google Scholar 

  144. Nan J, Zhang G, Zhu T, Wang Z, Wang L, Wang H, Chu F, Wang C, Tang C. A highly elastic and fatigue-resistant natural protein-reinforced hydrogel electrolyte for reversible-compressible quasi-solid-state supercapacitors. Adv Sci. 2020;7:2000587.

    Article  CAS  Google Scholar 

  145. Liu R, Ma L, Niu G, Li X, Li E, Bai Y, Yuan G. Oxygen-deficient bismuth oxide/graphene of ultrahigh capacitance as advanced flexible anode for asymmetric supercapacitors. Adv Funct Mater. 2017;27:1701635.

    Article  Google Scholar 

  146. Zhang Y, Lin Q, Han J, Han Z, Li T, Kang F, Yang Q, Lü W. Bacterial cellulose-derived three-dimensional carbon current collectors for dendrite-free lithium metal anodes. Acta Phys Chim Sin. 2021;37:2008088.

    Google Scholar 

  147. Wu ZY, Li C, Liang HW, Chen JF, Yu SH. Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew Chem Int Ed. 2013;52:2925.

    Article  CAS  Google Scholar 

  148. Xu J, Duan L, Liao J, Tang H, Lin J, Zhou X. KVPO4F/carbon nanocomposite with highly accessible active sites and robust chemical bonds for advanced potassium-ion batteries. Green Energy Environ. 2023;8:1469.

    Article  CAS  Google Scholar 

  149. Wang S, Xu Q, Sun H. Functionalization of fiber devices: Materials, preparations and applications. Adv Fiber Mater. 2022;4:324.

    Article  CAS  Google Scholar 

  150. Li X, Yuan L, Liu R, He H, Hao J, Lu Y, Wang Y, Liang G, Yuan G, Guo Z. Engineering textile electrode and bacterial cellulose nanofiber reinforced hydrogel electrolyte to enable high-performance flexible all-solid-state supercapacitors. Adv Energy Mater. 2021;11:2003010.

    Article  CAS  Google Scholar 

  151. Zheng Y, Man Z, Zhang Y, Wu G, Lu W, Chen W. High-performance stretchable supercapacitors based on centrifugal electrospinning-directed hetero-structured graphene–polyaniline hierarchical fabric. Adv Fiber Mater. 2023;5:1759.

    Article  CAS  Google Scholar 

  152. Shao C, Qiu S, Wu G, Cui B, Chu H, Zou Y, Xiang C, Xu F, Sun L. Rambutan-like hierarchically porous carbon microsphere as electrode material for high-performance supercapacitors. Carbon Energy. 2020;3:361.

    Article  Google Scholar 

  153. Qin H, Liu P, Chen C, Cong HP, Yu SH. A multi-responsive healable supercapacitor. Nat Commun. 2021;12:4297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wu H, Yuan W, Yuan X, Cheng L. Atmosphere-free activation methodology for holey graphene/cellulose nanofiber-based film electrode with highly efficient capacitance performance. Carbon Energy. 2022;5: e229.

    Article  Google Scholar 

  155. Xu T, Du H, Liu H, Liu W, Zhang X, Si C, Liu P, Zhang K. Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv Mater. 2021;33: e2101368.

    Article  PubMed  Google Scholar 

  156. Liu Z, Li H, Shi B, Fan Y, Wang ZL, Li Z. Wearable and implantable triboelectric nanogenerators. Adv Funct Mater. 2019;29:1808820.

    Article  Google Scholar 

  157. Fan F, Tian Z, Zhong L. Flexible triboelectric generator. Nano Energy. 2012;1:328.

    Article  CAS  Google Scholar 

  158. Wang ZL. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater Today. 2017;20:74.

    Article  Google Scholar 

  159. Cai C, Luo B, Liu Y, Fu Q, Liu T, Wang S, Nie S. Advanced triboelectric materials for liquid energy harvesting and emerging application. Mater Today. 2022;52:299.

    Article  CAS  Google Scholar 

  160. Zhao D, Zhu Y, Cheng W, Chen W, Wu Y, Yu H. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv Mater. 2021;33: e2000619.

    Article  PubMed  Google Scholar 

  161. Qin Y, Zhang W, Liu Y, Zhao J, Yuan J, Chi M, Meng X, Du G, Cai C, Wang S, Nie S. Cellulosic gel-based triboelectric nanogenerators for energy harvesting and emerging applications. Nano Energy. 2023;106: 108079.

    Article  CAS  Google Scholar 

  162. Bai Z, Xu Y, Zhang Z, Zhu J, Gao C, Zhang Y, Jia H, Guo J. Highly flexible, porous electroactive biocomposite as attractive tribopositive material for advancing high-performance triboelectric nanogenerator. Nano Energy. 2020;75: 104884.

    Article  CAS  Google Scholar 

  163. Asadi Tashvigh A, Chung TS. Facile fabrication of solvent resistant thin film composite membranes by interfacial crosslinking reaction between polyethylenimine and dibromo-p-xylene on polybenzimidazole substrates. J Membr Sci. 2018;560:115.

    Article  CAS  Google Scholar 

  164. Asadi Tashvigh A, Luo L, Chung T-S, Weber M, Maletzko C. Performance enhancement in organic solvent nanofiltration by double crosslinking technique using sulfonated polyphenylsulfone (sPPSU) and polybenzimidazole (PBI). J Membr Sci. 2018;551:204.

    Article  Google Scholar 

  165. Zou H, Zhang Y, Guo L, Wang P, He X, Dai G, Zheng H, Chen C, Wang AC, Xu C, Wang ZL. Quantifying the triboelectric series. Nat Commun. 2019;10:1427.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Oh H, Kwak SS, Kim B, Han E, Lim GH, Kim SW, Lim B. Highly conductive ferroelectric cellulose composite papers for efficient triboelectric nanogenerators. Adv Funct Mater. 2019;29:1904066.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials (KF2320), National Key Research and Development Program of China (2022YFB3804905, 2022YFB3804900), National Natural Science Foundation of China (22375047 and 22378068 and 22378071), Natural Science Foundation of Fujian Province (2022J01568 and 2020J06038), and State Key Laboratory of New Textile Materials and Advanced Processing Technologies (FZ2021012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Cheng, Jianying Huang, Weilong Cai or Yuekun Lai.

Ethics declarations

Conflict of interest

All authors declare that there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Zhu, T., Cheng, Y. et al. Recent Advances in Functional Cellulose-Based Materials: Classification, Properties, and Applications. Adv. Fiber Mater. (2024). https://doi.org/10.1007/s42765-024-00454-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42765-024-00454-0

Keywords

Navigation