Skip to main content
Log in

Structure and 2p decay mechanism of 18Mg

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The recently discovered, extremely proton-rich nuclide \(^{18}\)Mg exhibits ground-state decay via two sequential two-proton (2p) emissions through the intermediate nucleus, \(^{16}\)Ne. This study investigates the structure and the initial 2p decay mechanism of \(^{18}\textrm{Mg}\) by examining the density and correlations of the valence protons using a three-body Gamow coupled-channel method. The results show that the ground state of \(^{18}\textrm{Mg}\) is significantly influenced by the continuum, resulting in a significant s-wave component. However, based on the current framework, this does not lead to a significant deviation in mirror symmetry in either the structure or spectroscopy of the \(^{18}\textrm{Mg}\)\(^{18}\textrm{C}\) pair. Additionally, the time evolution analysis of the \(^{18}\textrm{Mg}\) ground state suggests a simultaneous 2p emission during the first step of decay. The observed nucleon–nucleon correlations align with those of the light-mass 2p emitters, indicating a consistent decay behavior within this nuclear region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://cstr.cn/31253.11.sciencedb.j00186.00161 and https://www.doi.org/10.57760/sciencedb.j00186.00161

References

  1. V.I. Goldansky, On neutron-deficient isotopes of light nuclei and the phenomena of proton and two-proton radioactivity. Nucl. Phys. 19, 482–495 (1960). https://doi.org/10.1016/0029-5582(60)90258-3

    Article  Google Scholar 

  2. V.I. Goldansky, 2-proton radioactivity. Nucl. Phys. 27, 648–664 (1961). https://doi.org/10.1016/0029-5582(61)90309-1

    Article  Google Scholar 

  3. J. Giovinazzo, B. Blank, M. Chartier et al., Two-proton radioactivity of \(^{45}\)Fe. Phys. Rev. Lett. 89, 102501 (2002). https://doi.org/10.1103/PhysRevLett.89.102501

    Article  ADS  Google Scholar 

  4. M. Pfützner, E. Badura, C. Bingham et al., First evidence for the two-proton decay of \(^{45}\)Fe. Eur. Phys. J. A 14, 279–285 (2002). https://doi.org/10.1140/epja/i2002-10033-9

    Article  ADS  Google Scholar 

  5. B. Blank, M. Płoszajczak, Two-proton radioactivity. Rep. Prog. Phys. 71, 046301 (2008). https://doi.org/10.1088/0034-4885/71/4/046301

    Article  ADS  Google Scholar 

  6. L.V. Grigorenko, Theoretical study of two-proton radioactivity. Status, predictions, and applications. Phys. Part. Nucl. 40, 674–714 (2009). https://doi.org/10.1134/S1063779609050049

    Article  Google Scholar 

  7. L. Zhou, D.Q. Fang, S.M. Wang et al., Recent progress in two-proton radioactivity. Nucl. Sci. Tech. 33, 105 (2022). https://doi.org/10.1007/s41365-022-01091-1

    Article  Google Scholar 

  8. M. Pfützner, I. Mukha, S.M. Wang, Two-proton emission and related phenomena. Prog. Part. Nucl. Phys. 123, 104050 (2023). https://doi.org/10.1016/j.ppnp.2023.104050

    Article  Google Scholar 

  9. Z.Y. Yuan, D. Bai, Z. Wang et al., Research on two-proton radioactivity in density-dependent cluster model. Sci. China-Phys. Mech. Astron. 66, 222012 (2023). https://doi.org/10.1007/s11433-022-1994-8

    Article  ADS  Google Scholar 

  10. F. Catara, A. Insolia, E. Maglione et al., Relation between pairing correlations and two-particle space correlations. Phys. Rev. C 29, 1091–1094 (1984). https://doi.org/10.1103/PhysRevC.29.1091

    Article  ADS  Google Scholar 

  11. N. Pillet, N. Sandulescu, P. Schuck, Generic strong coupling behavior of Cooper pairs on the surface of superfluid nuclei. Phys. Rev. C 76, 024310 (2007). https://doi.org/10.1103/PhysRevC.76.024310

    Article  ADS  Google Scholar 

  12. K. Hagino, H. Sagawa, Pairing correlations in nuclei on the neutron-drip line. Phys. Rev. C 72, 044321 (2005). https://doi.org/10.1103/PhysRevC.72.044321

    Article  ADS  Google Scholar 

  13. K. Hagino, H. Sagawa, J. Carbonell et al., Coexistence of BCS- and BEC-like pair structures in halo nuclei. Phys. Rev. Lett. 99, 022506 (2007). https://doi.org/10.1103/PhysRevLett.99.022506

    Article  ADS  Google Scholar 

  14. Y.Y. Chu, Z.Z. Ren, Properties of proton-rich nuclei in a three-body model. Eur. Phys. J. A 37, 361–366 (2008). https://doi.org/10.1140/epja/i2008-10626-2

    Article  ADS  Google Scholar 

  15. L.V. Grigorenko, T.D. Wiser, K. Miernik et al., Complete correlation studies of two-proton decays: \(^{6}\)Be and \(^{45}\)Fe. Phys. Lett. B 677, 30–35 (2009). https://doi.org/10.1016/j.physletb.2009.04.085

    Article  ADS  Google Scholar 

  16. C.J. Lin, X.X. Xu, H.M. Jia et al., Experimental study of two-proton correlated emission from \(^{29}\)S excited states. Phys. Rev. C 80, 014310 (2009). https://doi.org/10.1103/PhysRevC.80.014310

    Article  ADS  Google Scholar 

  17. C.J. Lin, X.X. Xu, H.M. Jia et al., Experimental study of the two-proton correlated emission from the excited states of \(^{17,18}\)Ne and \(^{28,29}\)S. Nucl. Phys. A 834, 450c–453c (2010), the 10th International Conference on Nucleus-Nucleus Collisions (NN2009). https://doi.org/10.1016/j.nuclphysa.2010.01.061

  18. K. Hagino, H. Sagawa, Correlated two-neutron emission in the decay of the unbound nucleus \(^{26}\)O. Phys. Rev. C 89, 014331 (2014). https://doi.org/10.1103/PhysRevC.89.014331

    Article  ADS  Google Scholar 

  19. M. Matsuo, Spatial structure of Cooper pairs in nuclei, in Fifty Years of Nuclear BCS, ed. by R.A. Broglia, V. Zelevinsky (World Scientific Publishing, Singapore, 2012), p. 61–72. https://doi.org/10.1142/9789814412490_0005

  20. I. Mukha, L.V. Grigorenko, X. Xu et al., Observation and spectroscopy of new proton-unbound isotopes \(^{30}\) Ar and \(^{29}\)Cl: An interplay of prompt two-proton and sequential decay. Phys. Rev. Lett. 115, 202501 (2015). https://doi.org/10.1103/PhysRevLett.115.202501

    Article  ADS  Google Scholar 

  21. Y.G. Ma, D.Q. Fang, X.Y. Sun et al., Different mechanism of two-proton emission from proton-rich nuclei \(^{23}\) Al and \(^{22}\) Mg. Phys. Lett. B 743, 306–309 (2015). https://doi.org/10.1016/j.physletb.2015.02.066

    Article  ADS  Google Scholar 

  22. K. Fossez, J. Rotureau, N. Michel et al., Continuum effects in neutron-drip-line oxygen isotopes. Phys. Rev. C 96, 024308 (2017). https://doi.org/10.1103/PhysRevC.96.024308

    Article  ADS  Google Scholar 

  23. J. Casal, M. Gómez-Ramos, Opening angle and dineutron correlations in knockout reactions with Borromean two-neutron halo nuclei. Phys. Rev. C 104, 024618 (2021). https://doi.org/10.1103/PhysRevC.104.024618

    Article  ADS  Google Scholar 

  24. R.J. Charity, J.M. Elson, J. Manfredi et al., Isobaric multiplet mass equation for A=7 and 8. Phys. Rev. C 84, 051308 (2011). https://doi.org/10.1103/PhysRevC.84.051308

    Article  ADS  Google Scholar 

  25. K.W. Brown, R.J. Charity, J.M. Elson et al., Proton-decaying states in light nuclei and the first observation of \(^{17}\) Na. Phys. Rev. C 95, 044326 (2017). https://doi.org/10.1103/PhysRevC.95.044326

    Article  ADS  Google Scholar 

  26. D. Kostyleva, I. Mukha, L. Acosta et al., Towards the limits of existence of nuclear structure: observation and first spectroscopy of the isotope \(^{31}\)K by measuring its three-proton decay. Phys. Rev. Lett. 123, 092502 (2019). https://doi.org/10.1103/PhysRevLett.123.092502

    Article  ADS  Google Scholar 

  27. R.J. Charity, T.B. Webb, J.M. Elson et al., Observation of the exotic isotope \(^{13}\)F located four neutrons beyond the proton drip line. Phys. Rev. Lett. 126, 132501 (2021). https://doi.org/10.1103/PhysRevLett.126.132501

    Article  ADS  Google Scholar 

  28. R.J. Charity, J.M. Elson, J. Manfredi et al., 2p–2p decay of \({}^{8}\textbf{C} \) and isospin-allowed \(2p\) decay of the isobaric-analog state in \({}^{8}\textbf{B} \). Phys. Rev. C 82, 041304 (2010). https://doi.org/10.1103/PhysRevC.82.041304

    Article  ADS  Google Scholar 

  29. Y. Jin, C.Y. Niu, K.W. Brown et al., First observation of the four-proton unbound nucleus \(^{18}\)Mg. Phys. Rev. Lett. 127, 262502 (2021). https://doi.org/10.1103/PhysRevLett.127.262502

    Article  ADS  Google Scholar 

  30. R.J. Charity, J. Wylie, S.M. Wang et al., Strong evidence for \(^{9}\)N and the limits of existence of atomic nuclei. Phys. Rev. Lett. 131, 172501 (2023). https://doi.org/10.1103/PhysRevLett.131.172501

    Article  ADS  Google Scholar 

  31. Y. Suzuki, K. Ikeda, Cluster-orbital shell model and its application to the He isotopes. Phys. Rev. C 38, 410–413 (1988). https://doi.org/10.1103/PhysRevC.38.410

    Article  ADS  Google Scholar 

  32. D. Baye, P. Descouvemont, N.K. Timofeyuk, Matter densities of \(^8\)B and \(^8\)Li in a microscopic cluster model and the proton-halo problem of \(^8{\rm B}\). Nucl. Phys. A 577, 624–640 (1994). https://doi.org/10.1016/0375-9474(94)90936-9

    Article  ADS  Google Scholar 

  33. N. Michel, W. Nazarewicz, M. Płoszajczak et al., Gamow shell model description of neutron-rich nuclei. Phys. Rev. Lett. 89, 042502 (2002). https://doi.org/10.1103/PhysRevLett.89.042502

    Article  ADS  Google Scholar 

  34. F.C. Barker, \({R}\)-matrix formulas for three-body decay widths. Phys. Rev. C 68, 054602 (2003). https://doi.org/10.1103/PhysRevC.68.054602

    Article  ADS  Google Scholar 

  35. P. Descouvemont, D. Baye, The \({R}\)-matrix theory. Rep. Progr. Phys. 73, 036301 (2010). https://doi.org/10.1088/0034-4885/73/3/036301

    Article  ADS  MathSciNet  Google Scholar 

  36. K. Hagino, H. Sagawa, Decay dynamics of the unbound \({}^{25}\)O and \({}^{26}\)O nuclei. Phys. Rev. C 93, 034330 (2016). https://doi.org/10.1103/PhysRevC.93.034330

    Article  ADS  Google Scholar 

  37. T. Oishi, M. Kortelainen, A. Pastore, Dependence of two-proton radioactivity on nuclear pairing models. Phys. Rev. C 96, 044327 (2017). https://doi.org/10.1103/PhysRevC.96.044327

    Article  ADS  Google Scholar 

  38. L.V. Grigorenko, I.G. Mukha, I.J. Thompson et al., Two-proton widths of \(^{12}\)O, \(^{16}\)Ne, and three-body mechanism of Thomas–Ehrman shift. Phys. Rev. Lett. 88, 042502 (2002). https://doi.org/10.1103/PhysRevLett.88.042502

    Article  ADS  Google Scholar 

  39. L.V. Grigorenko, T.D. Wiser, K. Mercurio et al., Three-body decay of \(^{6}\)Be. Phys. Rev. C 80, 034602 (2009). https://doi.org/10.1103/PhysRevC.80.034602

    Article  ADS  Google Scholar 

  40. T.A. Golubkova, X.D. Xu, L.V. Grigorenko et al., Transition from direct to sequential two-proton decay in s-d shell nuclei. Phys. Lett. B 762, 263–270 (2016). https://doi.org/10.1016/j.physletb.2016.09.034

    Article  ADS  Google Scholar 

  41. H.T. Zhang, D. Bai, Z. Wang et al., Complex scaled nonlocalized cluster model for \(^{8}\)Be. Phys. Rev. C 105, 054317 (2022). https://doi.org/10.1103/PhysRevC.105.054317

    Article  ADS  Google Scholar 

  42. D.M. Zhang, L.J. Qi, D.X. Zhu et al., Systematic study on the proton radioactivity of spherical proton emitters. Nucl. Sci. Tech. 34, 55 (2023). https://doi.org/10.1007/s41365-023-01201-7

    Article  Google Scholar 

  43. D.X. Zhu, Y.Y. Xu, H.M. Liu et al., Two-proton radioactivity of the excited state within the Gamowlike and modified Gamow-like models. Nucl. Sci. Tech. 33, 122 (2022). https://doi.org/10.1007/s41365-022-01116-9

    Article  Google Scholar 

  44. D.X. Zhu, Y.Y. Xu, L.J. Chu et al., Two-proton radioactivity from excited states of proton-rich nuclei within coulomb and proximity potential model. Nucl. Sci. Tech. 34, 130 (2023). https://doi.org/10.1007/s41365-023-01268-2

    Article  Google Scholar 

  45. Z.Z. Zhang, C.X. Yuan, C. Qi et al., Extended \({R}\)-matrix description of two-proton radioactivity. Phys. Lett. B 838, 137740 (2023). https://doi.org/10.1016/j.physletb.2023.137740

    Article  Google Scholar 

  46. A. Yakhelef, N.K. Timofeyuk, J.S. Al-Khalili et al., Three-body spectrum of \(^{18}\)C and its relevance to \(r\)-process nucleosynthesis. Few-Body Syst. 47, 213–224 (2010). https://doi.org/10.1007/s00601-010-0086-8

    Article  ADS  Google Scholar 

  47. P. Voss, T. Baugher, D. Bazin et al., Excited-state transition-rate measurements in \({}^{18}\)C. Phys. Rev. C 86, 011303 (2012). https://doi.org/10.1103/PhysRevC.86.011303

    Article  ADS  Google Scholar 

  48. Y. Kondo, T. Nakamura, Y. Satou et al., One-neutron removal reactions of \(^{18}\)C and \(^{19}\)C on a proton target. Phys. Rev. C 79, 014602 (2009). https://doi.org/10.1103/PhysRevC.79.014602

    Article  ADS  Google Scholar 

  49. N. Michel, J.G. Li, F.R. Xu et al., Proton decays in \(^{16}\)Ne and \(^{18}\)Mg and isospin-symmetry breaking in carbon isotopes and isotones. Phys. Rev. C 103, 044319 (2021). https://doi.org/10.1103/PhysRevC.103.044319

    Article  ADS  Google Scholar 

  50. S.M. Wang, N. Michel, W. Nazarewicz et al., Structure and decays of nuclear three-body systems: the Gamow coupled-channel method in Jacobi coordinates. Phys. Rev. C 96, 044307 (2017). https://doi.org/10.1103/PhysRevC.96.044307

    Article  ADS  Google Scholar 

  51. S.M. Wang, W. Nazarewicz, Puzzling two-proton decay of \(^{67}\)Kr. Phys. Rev. Lett. 120, 212502 (2018). https://doi.org/10.1103/PhysRevLett.120.212502

    Article  ADS  Google Scholar 

  52. L.V. Grigorenko, M.V. Zhukov, Two-proton radioactivity and three-body decay. II. Exploratory studies of lifetimes and correlations. Phys. Rev. C 68, 054005 (2003). https://doi.org/10.1103/PhysRevC.68.054005

    Article  ADS  Google Scholar 

  53. T. Berggren, On the use of resonant states in eigenfunction expansions of scattering and reaction amplitudes. Nucl. Phys. A 109, 265–287 (1968). https://doi.org/10.1016/0375-9474(68)90593-9

    Article  ADS  Google Scholar 

  54. K. Hagino, N. Rowley, A.T. Kruppa, A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions. Comput. Phys. Commun. 123, 143–152 (1999). https://doi.org/10.1016/S0010-4655(99)00243-X

    Article  ADS  Google Scholar 

  55. K. Hagino, Role of dynamical particle-vibration coupling in reconciliation of the \({d}_{3/2}\) puzzle for spherical proton emitters. Phys. Rev. C 64, 041304 (2001). https://doi.org/10.1103/PhysRevC.64.041304

    Article  ADS  Google Scholar 

  56. B. Barmore, A.T. Kruppa, W. Nazarewicz et al., Theoretical description of deformed proton emitters: nonadiabatic coupled-channel method. Phys. Rev. C 62, 054315 (2000). https://doi.org/10.1103/PhysRevC.62.054315

    Article  ADS  Google Scholar 

  57. A.T. Kruppa, W. Nazarewicz, Gamow and \(r\)-matrix approach to proton emitting nuclei. Phys. Rev. C 69, 054311 (2004). https://doi.org/10.1103/PhysRevC.69.054311

    Article  ADS  Google Scholar 

  58. I.J. Thompson, B.V. Danilin, V.D. Efros et al., Pauli blocking in three-body models of halo nuclei. Phys. Rev. C 61, 024318 (2000). https://doi.org/10.1103/PhysRevC.61.024318

    Article  ADS  Google Scholar 

  59. I.J. Thompson, F.M. Nunes, B.V. Danilin, FaCE \(: a tool for three body\) Faddeev calculations with core excitation. Comput. Phys. Commun. 161, 87–107 (2004). https://doi.org/10.1016/j.cpc.2004.03.007

    Article  ADS  Google Scholar 

  60. P. Descouvemont, C. Daniel, D. Baye, Three-body systems with Lagrange-mesh techniques in hyperspherical coordinates. Phys. Rev. C 67, 044309 (2003). https://doi.org/10.1103/PhysRevC.67.044309

    Article  ADS  Google Scholar 

  61. S.M. Wang, W. Nazarewicz, Fermion pair dynamics in open quantum systems. Phys. Rev. Lett. 126, 142501 (2021). https://doi.org/10.1103/PhysRevLett.126.142501

    Article  ADS  Google Scholar 

  62. S.M. Wang, W. Nazarewicz, A. Volya et al., Probing the nonexponential decay regime in open quantum systems. Phys. Rev. Res. 5, 023183 (2023). https://doi.org/10.1103/PhysRevResearch.5.023183

    Article  Google Scholar 

  63. Evaluated Nuclear Structure Data File (ENSDF). http://www.nndc.bnl.gov/ensdf/

  64. N. Michel, J.G. Li, L.H. Ru et al., Calculation of the Thomas–Ehrman shift in \(^{16}\)F and \(^{15}\)O \((p, p)\) cross sections within the Gamow shell model. Phys. Rev. C 106, L011301 (2022). https://doi.org/10.1103/PhysRevC.106.L011301

    Article  ADS  Google Scholar 

  65. J.G. Li, N. Michel, W. Zuo et al., Resonances of A\(=4 \)T=1 isospin triplet states within the ab initio no-core Gamow shell model. Phys. Rev. C 104, 024319 (2021). https://doi.org/10.1103/PhysRevC.104.024319

    Article  ADS  Google Scholar 

  66. D.R. Thompson, M. Lemere, Y.C. Tang, Systematic investigation of scattering problems with the resonating-group method. Nucl. Phys. A 286, 53–66 (1977). https://doi.org/10.1016/0375-9474(77)90007-0

    Article  ADS  Google Scholar 

  67. C.R. Bain, P.J. Woods, R. Coszach et al., Two proton emission induced via a resonance reaction. Phys. Lett. B 373, 35–39 (1996). https://doi.org/10.1016/0370-2693(96)00109-8

    Article  ADS  Google Scholar 

  68. J.B. Ehrman, On the displacement of corresponding energy levels of C\(^{13}\) and N\(^{13}\). Phys. Rev. 81, 412–416 (1951). https://doi.org/10.1103/PhysRev.81.412

    Article  ADS  Google Scholar 

  69. R.G. Thomas, An analysis of the energy levels of the mirror nuclei, C\(^{13}\) and N\(^{13}\). Phys. Rev. 88, 1109–1125 (1952). https://doi.org/10.1103/PhysRev.88.1109

    Article  ADS  Google Scholar 

  70. S.M. Wang, W. Nazarewicz, R.J. Charity et al., Structure and decay of the extremely proton-rich nuclei \(^{11,12}\)O. Phys. Rev. C 99, 054302 (2019). https://doi.org/10.1103/PhysRevC.99.054302

    Article  ADS  Google Scholar 

  71. N.K. Timofeyuk, P. Descouvemont, Narrow states in the three-proton emitter \(^{17}\)Na. Phys. Rev. C 81, 051301 (2010). https://doi.org/10.1103/PhysRevC.81.051301

    Article  ADS  Google Scholar 

  72. H.T. Fortune, R. Sherr, Coulomb energies in \(^{16}\)Ne and low-lying levels of \(^{17}\)Na. Phys. Rev. C 82, 027310 (2010). https://doi.org/10.1103/PhysRevC.82.027310

    Article  ADS  Google Scholar 

  73. S.M. Wang, W. Nazarewicz, R.J. Charity et al., Nucleon-nucleon correlations in the extreme oxygen isotopes. J. Phys. G Nucl. Part. Phys. 49, 10LT02 (2022). https://doi.org/10.1088/1361-6471/ac888f

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Long Zhou, Si-Min Wang and De-Qing Fang. The first draft of the manuscript was written by Long Zhou and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to De-Qing Fang or Si-Min Wang.

Ethics declarations

Conflict of interest

De-Qing Fang and Si-Min Wang are the editorial board members for Nuclear Science and Techniques and was not involved in the editorial review, or the decision to publish this article. All authors declare that there are no Conflict of interest.

Additional information

This work was supported by the National Key Research and Development Program (MOST 2022YFA1602303 and MOST 2023YFA1606404), the National Natural Science Foundation of China (Nos. 12347106, 2147101, 11925502, 11935001 and 11961141003), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB34030000).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Fang, DQ., Wang, SM. et al. Structure and 2p decay mechanism of 18Mg. NUCL SCI TECH 35, 107 (2024). https://doi.org/10.1007/s41365-024-01479-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-024-01479-1

Keywords

Navigation