Skip to main content
Log in

One-neutron stripping process in the 209Bi(6Li, 5Li)210Bi* reaction reaction

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

One-neutron stripping process between \(^{6}\)Li and \(^{209}\)Bi was studied at 28, 30, and 34 MeV using the in-beam \(\gamma \)-ray spectroscopy method. The \(\gamma \)\(\gamma \) coincident analysis clearly identified two \(\gamma \)-rays feeding the ground and long-lived isomeric states, which were employed to determine the cross section. The one-neutron stripping cross sections were similar to the cross sections of complete fusion in the \(^6\)Li+\(^{209}\)Bi system, but the one-neutron stripping cross sections decreased more gradually at the sub-barrier region. A coupled-reaction-channel calculation was performed to study the detailed reaction mechanism of the one-neutron stripping process in \(^6\)Li. The calculations indicated that the first excited state of \(^5\)Li is critical in the actual one-neutron transfer mechanism, and the valence proton of \(^{209}\textrm{Bi}\) can be excited to the low-lying excited state in (\(^{6}\textrm{Li}\),\(^{5}\textrm{Li}\)) reaction, unlike in the (d,p) reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://cstr.cn/31253.11.sciencedb.j00186.00545 and https://doi.org/10.57760/sciencedb.j00186.00545.

References

  1. B.B. Back, H. Esbensen, C.L. Jiang et al., Recent developments in heavy-ion fusion reactions. Rev. Mod. Phys. 86, 317–360 (2014). https://doi.org/10.1103/RevModPhys.86.317

    Article  ADS  Google Scholar 

  2. C. Beck, N. Keeley, A. Diaz-Torres, Coupled-channel effects in elastic scattering and near-barrier fusion induced by weakly bound nuclei and exotic halo nuclei. Phys. Rev. C 75, 054605 (2007). https://doi.org/10.1103/PhysRevC.75.054605

    Article  ADS  Google Scholar 

  3. L. Canto, P. Gomes, R. Donangelo et al., Fusion and breakup of weakly bound nuclei. Phys. Rep. 424, 1–111 (2006). https://doi.org/10.1016/j.physrep.2005.10.006

    Article  ADS  Google Scholar 

  4. L. Canto, P. Gomes, R. Donangelo et al., Recent developments in fusion and direct reactions with weakly bound nuclei. Phys. Rep. 596, 1–86 (2015). https://doi.org/10.1016/j.physrep.2015.08.001

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Dasgupta, P.R.S. Gomes, D.J. Hinde et al., Effect of breakup on the fusion of \(^{6}{\rm Li}\), \(^{7}{\rm Li}\), and \(^{9}{\rm Be}\) with heavy nuclei. Phys. Rev. C 70, 024606 (2004). https://doi.org/10.1103/PhysRevC.70.024606

    Article  ADS  Google Scholar 

  6. N. Keeley, N. Alamanos, K. Kemper et al., Elastic scattering and reactions of light exotic beams. Prog. Part. Nucl. Phys. 63, 396–447 (2009). https://doi.org/10.1016/j.ppnp.2009.05.003

    Article  ADS  Google Scholar 

  7. N. Keeley, R. Raabe, N. Alamanos et al., Fusion and direct reactions of halo nuclei at energies around the coulomb barrier. Prog. Part. Nucl. Phys. 59, 579–630 (2007). https://doi.org/10.1016/j.ppnp.2007.02.002

    Article  ADS  Google Scholar 

  8. K. Hagino, N. Takigawa, Subbarrier fusion reactions and many-particle quantum tunneling. Prog. Theor. Phys. 128, 1061–1106 (2012). https://doi.org/10.1143/PTP.128.1061

    Article  ADS  Google Scholar 

  9. J.F. Liang, C. Signorini, Fusion induced by radioactive ion beams. Int. J. Mod. Phys. E 14, 1121–1150 (2005). https://doi.org/10.1142/S021830130500382X

    Article  ADS  Google Scholar 

  10. C.S. Palshetkar, S. Santra, A. Chatterjee et al., Fusion of the weakly bound projectile \(^{9}{\rm Be}\) with \(^{89}{\rm Y}\). Phys. Rev. C 82, 044608 (2010). https://doi.org/10.1103/PhysRevC.82.044608

    Article  ADS  Google Scholar 

  11. S. Santra, V. Parkar, K. Ramachandran et al., Resonant breakup of 6Li by 209 Bi. Phys. Lett. B 677, 139–144 (2009). https://doi.org/10.1016/j.physletb.2009.05.016

    Article  ADS  Google Scholar 

  12. A. Shrivastava, A. Navin, A. Lemasson et al., Exploring fusion at extreme sub-barrier energies with weakly bound nuclei. Phys. Rev. Lett. 103, 232702 (2009). https://doi.org/10.1103/PhysRevLett.103.232702

    Article  ADS  Google Scholar 

  13. G.L. Zhang, C.L. Zhang, H.Q. Zhang et al., Quasi-elastic scattering of the proton drip line nucleus 17f on 12c at 60 mev. Eur. Phys. J. A 48, 65 (2012). https://doi.org/10.1140/epja/i2012-12065-x

    Article  ADS  Google Scholar 

  14. S.P. Hu, G.L. Zhang, J.C. Yang et al., One-neutron stripping processes to excited states of the \(^{6}{\rm Li}+^{96}{\rm Zr}\) reaction at near-barrier energies. Phys. Rev. C 93, 014621 (2016). https://doi.org/10.1103/PhysRevC.93.014621

    Article  ADS  Google Scholar 

  15. G.L. Zhang, G.X. Zhang, S.P. Hu et al., One-neutron stripping processes to excited states of \(^{90}{\rm Y}^{*}\) in the \(^{89}{\rm Y}(^{6}{\rm Li},^{5}{\rm Li})^{90}{\rm Y}^{*}\) reaction. Phys. Rev. C 97, 014611 (2018). https://doi.org/10.1103/PhysRevC.97.014611

    Article  ADS  Google Scholar 

  16. Y.D. Fang, P.R.S. Gomes, J. Lubian et al., One-neutron stripping from \(^{9}\text{ Be }\) to \(^{169}\text{ Tm },^{181}\text{ Ta }\), and \(^{187}\text{ Re }\) at near-barrier energies. Phys. Rev. C 93, 034615 (2016). https://doi.org/10.1103/PhysRevC.93.034615

    Article  ADS  Google Scholar 

  17. A. Shrivastava, A. Navin, A. Lemasson et al., Exploring fusion at extreme sub-barrier energies with weakly bound nuclei. Phys. Rev. Lett. 103, 232702 (2009). https://doi.org/10.1103/PhysRevLett.103.232702

    Article  ADS  Google Scholar 

  18. A. Shrivastava, A. Navin, A. Diaz-Torres et al., Role of the cluster structure of 7Li in the dynamics of fragment capture. Phys. Lett. B 718, 931–936 (2013). https://doi.org/10.1016/j.physletb.2012.11.064

    Article  ADS  Google Scholar 

  19. C.S. Palshetkar, S. Thakur, V. Nanal et al., Fusion and quasi-elastic scattering in the \(^{6,7}{\rm Li}\)+\(^{197}{\rm Au}\) systems. Phys. Rev. C 89, 024607 (2014). https://doi.org/10.1103/PhysRevC.89.024607

    Article  ADS  Google Scholar 

  20. A. Di Pietro, P. Figuera, E. Strano et al., Heavy residue excitation functions for the collisions \({}^{6,7}\)li+\({}^{64}\)zn near the coulomb barrier. Phys. Rev. C 87, 064614 (2013). https://doi.org/10.1103/PhysRevC.87.064614

    Article  ADS  Google Scholar 

  21. Y.D. Fang, P.R.S. Gomes, J. Lubian et al., Complete and incomplete fusion of \(^{9}{\rm Be}\)\(+\)\(^{169}{\rm Tm},^{187}{\rm Re}\) at near-barrier energies. Phys. Rev. C 91, 014608 (2015). https://doi.org/10.1103/PhysRevC.91.014608

    Article  ADS  Google Scholar 

  22. M. Fisichella, A.C. Shotter, P. Figuera et al., Breakup and \(n\)-transfer effects on the fusion reactions \(^{6,7}{\rm Li}+^{120,119}{\rm Sn}\) around the coulomb barrier. Phys. Rev. C 95, 034617 (2017). https://doi.org/10.1103/PhysRevC.95.034617

    Article  ADS  Google Scholar 

  23. M.K. Pradhan, A. Mukherjee, S. Roy et al., Importance of the \(1n\)-stripping process in the \({}^{6}\)Li + \({}^{159}\)Tb reaction. Phys. Rev. C 88, 064603 (2013). https://doi.org/10.1103/PhysRevC.88.064603

    Article  ADS  Google Scholar 

  24. S. Santra, S. Kailas, V.V. Parkar et al., Disentangling reaction mechanisms for \(\alpha \) production in the \({}^{6}\)Li + \({}^{209}\)Bi reaction. Phys. Rev. C 85, 014612 (2012). https://doi.org/10.1103/PhysRevC.85.014612

    Article  ADS  Google Scholar 

  25. P.R.S. Gomes, A.M.M. Maciel, R.M. Anjos et al., Transfer reactions as a doorway to fusion. J. Phys. G Nucl. Part. Phys. 23, 1315 (1997). https://doi.org/10.1088/0954-3899/23/10/020

    Article  ADS  Google Scholar 

  26. N. Timofeyuk, R. Johnson, Theory of deuteron stripping and pick-up reactions for nuclear structure studies. Prog. Part. Nucl. Phys. 111, 103738 (2020). https://doi.org/10.1016/j.ppnp.2019.103738

    Article  Google Scholar 

  27. S. Butler, On angular distributions from (d, p) and (d, n) nuclear reactions. Phys. Rev. 80, 1095–1096 (1950). https://doi.org/10.1103/PhysRev.80.1095.2

    Article  ADS  Google Scholar 

  28. K. Wimmer, Nucleon transfer reactions with radioactive beams. J. Phys. G Nucl. Part. Phys. 45, 033002 (2018). https://doi.org/10.1088/1361-6471/aaa2bf

    Article  ADS  Google Scholar 

  29. C. Cline, W. Alford, H. Gove et al., Multiplet structure of 210bi from the 209bi(d, p) and 209bi(α, 3he) reactions. Nucl. Phys. A 186, 273–296 (1972). https://doi.org/10.1016/0375-9474(72)90046-2

    Article  ADS  Google Scholar 

  30. J.J. Kolata, W.W. Daehnick, Shell-model structure of \(^{210}{\rm Bi}\): \(^{209}{\rm Bi}(d, p)\) at 17 MeV. Phys. Rev. C 5, 568–578 (1972). https://doi.org/10.1103/PhysRevC.5.568

    Article  ADS  Google Scholar 

  31. C.R. Bingham, D.L. Hillis, Neutron shell structure in \(^{125}{\rm Sn}\) by (\(d, p\)) and (\(\alpha,^{3}{\rm He}\)) reactions. Phys. Rev. C 8, 729–736 (1973). https://doi.org/10.1103/PhysRevC.8.729

    Article  ADS  Google Scholar 

  32. M.J. Bechara, O. Dietzsch, States in \(^{121}{\rm Sn}\) from the \(^{120}{\rm Sn}(d, p)^{121}{\rm Sn}\) reaction at 17 mev. Phys. Rev. C 12, 90–101 (1975). https://doi.org/10.1103/PhysRevC.12.90

    Article  ADS  Google Scholar 

  33. D. Burke, G. Kajrys, Single-nucleon-transfer tests of the u(612) supersymmetry in platinum isotopes. Nucl. Phys. A 517, 1–26 (1990). https://doi.org/10.1016/0375-9474(90)90258-N

    Article  ADS  Google Scholar 

  34. C.R. Bingham, G.T. Fabian, Neutron shell structure in \(^{93}{\rm Zr}\), \(^{95}{\rm Zr}\), and \(^{97}{\rm Zr}\) by (\(d, p\)) and (\(\alpha \), \(^{3}{\rm He}\)) reactions. Phys. Rev. C 7, 1509–1518 (1973). https://doi.org/10.1103/PhysRevC.7.1509

    Article  ADS  Google Scholar 

  35. V.V. Parkar, A.P.M. Parmar et al., Investigating neutron transfer in the \(^{6}{\rm Li}+^{124}{\rm Sn}\) system. Phys. Rev. C 107, 024602 (2023). https://doi.org/10.1103/PhysRevC.107.024602

    Article  ADS  Google Scholar 

  36. J.R. Erskine, W.W. Buechner, H.A. Enge, \(^{209}{\rm Bi}\) (d, p) \(^{210}{\rm Bi}\) reaction at low bombarding energies and with high resolution. Phys. Rev 128, 720 (1962). https://doi.org/10.1103/PhysRev.128.720

    Article  ADS  Google Scholar 

  37. C. Ellegaard, P.D. Barnes, R. Eisenstein et al., Decay modes and lifetimes of the levels in the \(\pi h 92.\nu \)g92 multiplet in \(^{210}{\rm Bi}\). Phys. Lett. B 35, 145–147 (1971). https://doi.org/10.1016/0370-2693(71)90241-3

    Article  ADS  Google Scholar 

  38. H.T. Motz, E.T. Jurney, E.B. Shera et al., Low-lying configurations in \(^{210}{\rm Bi}\). Phys. Rev. Lett. 26, 854 (1971). https://doi.org/10.1103/PhysRevLett.26.854

    Article  ADS  Google Scholar 

  39. C.V.K. Baba, T. Faestermann, D.B. Fossan et al., Magnetic moments of the 7- and 5-(\(\pi \) h 9/2, \(\nu \) g 9/2) states in \(^{210}{\rm Bi}\). Phys. Rev. Lett. 29, 496 (1972). https://doi.org/10.1103/PhysRevLett.29.496

    Article  ADS  Google Scholar 

  40. D. Proetel, F. Riess, E. Grosse et al., Gamma decay of excited states in \(^{210}{\rm Bi}\) and an interpretation with the shell model. Phys. Rev. C 7, 2137 (1973). https://doi.org/10.1103/PhysRevC.7.2137

    Article  ADS  Google Scholar 

  41. D.J. Donahue, O. Häusser, R.L. Hershberger et al., Transition rates between two-body states in \(^{206}{\rm Tl}\), \(^{208}{\rm Bi}\), and \(^{210}{\rm Bi}\). Phys. Rev. C 12, 1547 (1975). https://doi.org/10.1103/PhysRevC.12.1547

    Article  ADS  Google Scholar 

  42. T.R. Canada, R.A. Eisenstein, C. Ellegaard et al., The \(\gamma \)-decay of two-particle states in 210bi. Nucl. Phys. A 205, 145–167 (1973). https://doi.org/10.1016/0375-9474(73)90126-7

    Article  ADS  Google Scholar 

  43. J. Gutleber, S. Murray, L. Orsini, Towards a homogeneous architecture for high-energy physics data acquisition systems. Comput. Phys. Commun. 153, 155–163 (2003). https://doi.org/10.1016/S0010-4655(03)00161-9

    Article  ADS  Google Scholar 

  44. A. Goasduff, D. Mengoni, F. Recchia et al., The Galileo-ray array at the Legnaro national laboratories. Nucl. Instr. Meth. Phys. Res. A 1015, 165753 (2021). https://doi.org/10.1016/j.nima.2021.165753

    Article  Google Scholar 

  45. D. Testov, D. Mengoni, A. Goasduff et al., The 4 \(\pi \) highly-efficient light-charged-particle detector euclides, installed at the Galileo array for in-beam \(\gamma \)-ray spectroscopy. Eur. Phys. J. A. 55, 47 (2019). https://doi.org/10.1140/epja/i2019-12714-6

  46. A. Gavron, Statistical model calculations in heavy ion reactions. Phys. Rev. C 21, 230–236 (1980). https://doi.org/10.1103/PhysRevC.21.230

    Article  ADS  Google Scholar 

  47. R.K. Sheline, R.L. Ponting, A.K. Jain et al., Spectroscopy of the high-lying configurations in \(^{210}\)Bi. Czech. J. Phys. B39, 22 (1989). https://doi.org/10.1007/BF01597435

  48. I.J. Thompson, Coupled reaction channels calculations in nuclear physics. Comput. Phys. Rep. 7, 167–212 (1988). https://doi.org/10.1016/0167-7977(88)90005-6

    Article  ADS  Google Scholar 

  49. S. Santra, S. Kailas, K. Ramachandran et al., Reaction mechanisms involving weakly bound \(^{6}{\rm Li}\) and \(^{209}{\rm Bi}\) at energies near the coulomb barrier. Phys. Rev. C 83, 034616 (2011). https://doi.org/10.1103/PhysRevC.83.034616

    Article  ADS  Google Scholar 

  50. L.C. Chamon, D. Pereira, M.S. Hussein et al., Nonlocal description of the nucleus-nucleus interaction. Phys. Rev. Lett. 79, 5218–5221 (1997). https://doi.org/10.1103/PhysRevLett.79.5218

    Article  ADS  Google Scholar 

  51. J. Lubian, J.L. Ferreira, J. Rangel et al., Fusion processes in collisions of \(^6\)Li beams on heavy targets. Phys. Rev. C li beams on heavy targets. Phys. Rev. C 105, 054601 (2022). https://doi.org/10.1103/PhysRevC.105.054601

  52. L.F. Canto, J. Lubian, P.R.S. Gomes et al., Continuum-continuum coupling and polarization potentials for weakly bound systems. Phys. Rev. C 80, 047601 (2009). https://doi.org/10.1103/PhysRevC.80.047601

    Article  ADS  Google Scholar 

  53. K.H. Maier, T. Nail, R.K. Sheline et al., Structure of \(^{209}{\rm Bi}\) deduced from the \(^{208}{\rm Pb}(t, 2n\gamma )\) reaction. Phys. Rev. C 27, 1431–1453 (1983). https://doi.org/10.1103/PhysRevC.27.1431

    Article  ADS  Google Scholar 

  54. NuShellX for Windows and Linux, http://www.garsington.eclipse.co.uk/ (2024)

  55. E.K. Warburton, B.A. Brown, Appraisal of the Kuo-Herling shell-model interaction and application to A=210-212 nuclei. Phys. Rev. C 43, 602–617 (1991). https://doi.org/10.1103/PhysRevC.43.602

  56. J. McGrory, T. Kuo, Shell model calculations of two to four identical—“particle” systems near Pb. Nucl. Phys. A 247, 283–316 (1975). https://doi.org/10.1016/0375-9474(75)90637-5

Download references

Acknowledgements

We are grateful to the INFN-LNL staff for providing a stable 6-Li beam throughout the experiment.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Gao-Long Zhang, Zhen-Wei Jiao, Guang-Xin Zhang and Shi-Peng Hu. The first draft of the manuscript was written by Zhen-Wei Jiao, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Guang-Xin Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Nature Science Foundation of China (Nos. U2167204, 11975040, and U1832130), the Brazilian funding agencies CAPES, CNPq, FAPERJ, and the INCT-FNA (Instituto Nacional de Ciência e Tecnologia-Física Nuclear e Aplicações), research project 464898/2014-5. S. P. Hu was supported by Guang dong Key Research And Development Program (No. 2020B040420005), Guang dong Basic and Applied Basic Research Foundation (No. 2021B1515120027), Ling Chuang Research Project of China National Nuclear Corporation (No. 20221024000072F6-0002-7), and Nuclear Energy Development and Research Project (No. HNKF202224(28)). The work was also supported by the ‘111’ center (B20065). M. Siciliano was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract number DE-AC02- 06CH1135.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, GL., Jiao, ZW., Zhang, GX. et al. One-neutron stripping process in the 209Bi(6Li, 5Li)210Bi* reaction reaction. NUCL SCI TECH 35, 104 (2024). https://doi.org/10.1007/s41365-024-01462-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-024-01462-w

Keywords

Navigation