Skip to main content
Log in

Opportunities for production and property research of neutron-rich nuclei around N = 126 at HIAF

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The study of nuclide production and its properties in the \({N}=126\) neutron-rich region is prevalent in nuclear physics and astrophysics research. The upcoming High-energy FRagment Separator (HFRS) at the High-Intensity heavy-ion Accelerator Facility (HIAF), an in-flight separator at relativistic energies, is characterized by high beam intensity, large ion-optical acceptance, high magnetic rigidity, and high momentum resolution power. This provides an opportunity to study the production and properties of neutron-rich nuclei around \({N}=126\). In this paper, an experimental scheme is proposed to produce neutron-rich nuclei around \({N}=126\) and simultaneously measure their mass and lifetime based on the HFRS separator; the feasibility of this scheme is evaluated through simulations. The results show that under the high-resolution optical mode, many new neutron-rich nuclei approaching the r-process abundance peak around \({A}=195\) can be produced for the first time, and many nuclei with unknown masses and lifetimes can be produced with high statistics. Using the time-of-flight corrected by the measured dispersive position and energy loss information, the cocktails produced from \({}^{208}\)Pb fragmentation can be unambiguously identified. Moreover, the masses of some neutron-rich nuclei near \({N}=126\) can be measured with high precision using the time-of-flight magnetic rigidity technique. This indicates that the HIAF-HFRS facility has the potential for the production and property research of neutron-rich nuclei around \({N}=126\), which is of great significance for expanding the chart of nuclides, developing nuclear theories, and understanding the origin of heavy elements in the universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are openly available in Science Data Bank at https://cstr.cn/31253.11.sciencedb.j00186.00512 and https://doi.org/10.57760/sciencedb.j00186.00512

References

  1. T. Kajino, Underground laboratory JUNA shedding light on stellar nucleosynthesis. Nucl. Sci. Tech. 34, 42 (2023). https://doi.org/10.1007/s41365-023-01196-1

    Article  Google Scholar 

  2. B. Guo, W.P. Liu, X.D. Tang et al., Research program of nuclear astrophysics based on the HIAF. Sci. Sin. Phys. Mech. Astron. 50, 112007 (2020). https://doi.org/10.1360/SSPMA-2020-0281

    Article  Google Scholar 

  3. Y.G. Ma, Annual review of the advances in nuclear physics. Sci. Technol. Rev. 41, 14 (2022). https://doi.org/10.3981/j.issn.1000-7857.2023.01.002

    Article  Google Scholar 

  4. Y.F. Gao, B.S. Cai, C.X. Yuan, Investigation of \(\beta ^{-}\) decay half life and delayed neutron emission with an uncertainty analysis. Nucl. Sci. Tech. 34, 9 (2023). https://doi.org/10.1007/s41365-022-01153-4

    Article  Google Scholar 

  5. M. Shi, J.Y. Fang, Z.M. Niu, Exploring the uncertainties in theoretical predictions of nuclear \(\beta\)-decay half-lives. Chin. Phys. C 45, 044103 (2021). https://doi.org/10.1088/1674-1137/abdf42

    Article  ADS  Google Scholar 

  6. Z. Chen, X.P. Zhang, H.Y. Yang et al., \(\beta ^{-}\)-decay half-lives for waiting point nucleiaround N=\(82\). Acta Phys. Sin. 63, 162301 (2014). https://doi.org/10.7498/aps.63.162301

    Article  Google Scholar 

  7. Z.M. Niu, H.Z. Liang, B.H. Sun et al., Predictions of nuclear \(\beta\)-decay half-lives with machine learning and their impact on r-process nucleosynthesis. Phys. Rev. C 99, 064307 (2019). https://doi.org/10.1103/PhysRevC.99.064307

    Article  ADS  Google Scholar 

  8. Z.M. Niu, H.Z. Liang, Nuclear mass predictions with machine learning reaching the accuracy required by r-process studies. Phys. Rev. C 106, L021303 (2022). https://doi.org/10.1103/PhysRevC.106.L021303

    Article  ADS  Google Scholar 

  9. X.F. Jiang, X.H. Wu, P.W. Zhao, Sensitivity study of r-process abundances to nuclear masses. Astrophys. J. 915, 29 (2021). https://doi.org/10.3847/1538-4357/ac042f

    Article  ADS  Google Scholar 

  10. Z. Li, Z.M. Niu, B.H. Sun, Influence of nuclear physics inputs and astrophysical conditions on r-process. Sci. China Phys. Mech. Astron. 62, 982011 (2019). https://doi.org/10.1007/s11433-018-9355-y

    Article  ADS  Google Scholar 

  11. F. Niu, P.H. Chen, H.G. Cheng et al., Multi-nucleon transfer dynamics in nearly symmetric nuclear reactions. Nucl. Sci. Tech. 31, 59 (2020). https://doi.org/10.1007/s41365-020-00770-1

    Article  Google Scholar 

  12. X. Jiang, N. Wang, Production mechanism of neutron-rich nuclei around N=\(126\) in the multi-nucleon transfer reaction \({}^{132}\)Sn+\({}^{208}\)Pb. Chin. Phys. C 42, 104105 (2018). https://doi.org/10.1088/1674-1137/42/10/104105

    Article  ADS  Google Scholar 

  13. P.H. Chen, C. Geng, Z.X. Yang et al., Production of neutron-rich actinide isotopes in isobaric collisions via multi-nucleon transfer reactions. Nucl. Sci. Tech. 34, 160 (2023). https://doi.org/10.1007/s41365-023-01314-z

    Article  Google Scholar 

  14. Z.H. Liao, L. Zhu, Z.P. Gao et al., Optimal detection angles for producing N=\(126\) neutron-rich isotones in multi-nucleon transfer reactions. Phys. Rev. Res. 5, L022021 (2023). https://doi.org/10.1103/PhysRevResearch.5.L022021

    Article  Google Scholar 

  15. Y. Hirayama, Y.X. Watanabe, M. Mukai et al., Doughnut-shaped gas cell for KEK isotope separation system. Nucl. Instrum. Methods Phys. Res. B 412, 11 (2017). https://doi.org/10.1016/j.nimb.2017.08.037

    Article  ADS  Google Scholar 

  16. A. Spătaru, D.L. Balabanski, O. Beliuskina et al., Production of exotic nuclei via MNT reactions using gas cells. Acta Phys. Pol. B 51, 817 (2020). https://doi.org/10.5506/APhysPolB.51.817

    Article  ADS  Google Scholar 

  17. G. Savard, M. Brodeur, J.A. Clark et al., The N=\(126\) factory: a new facility to produce very heavy neutron-rich isotope. Nucl. Instrum. Methods Phys. Res. B 463, 258 (2020). https://doi.org/10.1016/j.nimb.2019.05.024

    Article  ADS  Google Scholar 

  18. A. Rotaru, D. Amanbayev, D.L. Balabanski et al., SINCREASE: an in-cell reaction system for multi-nucleon transfer and spontaneous fission at the FRS ion catcher. Nucl. Instrum. Methods Phys. Res. B 512, 83 (2022). https://doi.org/10.1016/j.nimb.2021.11.018

    Article  ADS  Google Scholar 

  19. M. Mukai, Y. Hirayama, Y.X. Watanabe et al., In-gas-cell laser resonance ionization spectroscopy of \({}^{196,197,198}\)Ir. Rhys. Rev. C 102, 054307 (2020). https://doi.org/10.1103/PhysRevC.102.054307

    Article  ADS  Google Scholar 

  20. H. Choi, Y. Hirayama, S. Choi et al., In-gas-cell laser ionization spectroscopy of \({}^{194,196}\)Os isotopes by using a multireflection time-of-flight mass spectrograph. Rhys. Rev. C 102, 034309 (2020). https://doi.org/10.1103/PhysRevC.102.034309

    Article  ADS  Google Scholar 

  21. M. Huyse, M. Facina, Y. Kudryavtsev et al., Intensity limitations of a gas cell for stopping, storing and guiding of radioactive ions. Nucl. Instrum. Methods. Phys. Res. B 187, 535 (2002). https://doi.org/10.1016/S0168-583X(01)01152-1

    Article  ADS  Google Scholar 

  22. Y.S. Wang, W.X. Huang, Y.L. Tian et al., Monte-Carlo simulation of ion distributions in a gas cell for multi-nucleon transfer reaction products at LENSHIAF spectrometer. Nucl. Instrum. Methods. Phys. Res. B 463, 528 (2020). https://doi.org/10.1016/j.nimb.2019.02.013

    Article  ADS  Google Scholar 

  23. J. Even, X. Chen, A. Soylu et al., The NEXT project: towards production and investigation of neutron-rich heavy nuclides. Atoms 10(2), 59 (2022). https://doi.org/10.3390/atoms10020059

    Article  ADS  Google Scholar 

  24. T. Aoki, Y. Hirayama, H. Ishiyama et al., Design report of the KISS-II facility for exploring the origin of uranium. arXiv:2209.12649

  25. J. Kurcewicz, F. Farinon, H. Geissel et al., Discovery and cross-section measurement of neutron-rich isotopes in the element range from neodymium to platinum with the FRS. Phys. Lett. B 717, 371 (2012). https://doi.org/10.1016/j.physletb.2012.09.021

    Article  ADS  Google Scholar 

  26. T. Kurtukian-Nieto, J. Benlliure, K.-H. Schmidt et al., Produced cross sections of heavy neutron-rich nuclei approaching the nucleosynthesis r-process path around A=\(195\). Phys. Rev. C 89, 024616 (2014). https://doi.org/10.1103/PhysRevC.89.024616

    Article  ADS  Google Scholar 

  27. C.W. Ma, H.L. Wei, X.Q. Liu et al., Nuclear fragments in projectile fragmentation reactions. Prog. Part. Nucl. Phys. 121, 103911 (2021). https://doi.org/10.1016/j.ppnp.2021.103911

    Article  Google Scholar 

  28. J.S. Winfield, H. Geissel, B. Franczak et al., Ion-optical developments tailored for experiments with the Super-FRS at FAIR. Nucl. Instrum. Methods Phys. Res. B 491, 38 (2021). https://doi.org/10.1016/j.nimb.2021.01.004

    Article  ADS  Google Scholar 

  29. W.R. Plaß, T. Dickel, I. Mardor et al., The science case of the FRS Ion Catcher for FAIR Phase-0. Hyperfine Interact. 240, 73 (2019). https://doi.org/10.1007/s10751-019-1597-4

    Article  Google Scholar 

  30. L.N. Sheng, X.H. Zhang, J.Q. Zhang et al., Ion-optical design of high energy FRagment Separator (HFRS) at HIAF. Nucl. Instrum. Methods Phys. Res. B 469, 1 (2020). https://doi.org/10.1016/j.nimb.2020.02.026

    Article  ADS  Google Scholar 

  31. L.N. Sheng, X.H. Zhang, H. Ren et al., Ion-optical updates and performance analysis of High energy FRagment Separator (HFRS) at HIAF. Nucl. Instrum. Methods Phys. Res. B 547, 165214 (2024). https://doi.org/10.1016/j.nimb.2023.165214

    Article  Google Scholar 

  32. J.C. Yang, J.W. Xia, G.Q. Xiao et al., High intensity heavy ion accelerator facility (HIAF) in China. Nucl. Instrum. Methods Phys. Res. B 317, 263 (2013). https://doi.org/10.1016/j.nimb.2013.08.046

    Article  ADS  Google Scholar 

  33. Y. Yang, Y.W. Su, W.Y. Li et al., Evaluation of radiation environment in the target area of fragment separator HFRS at HIAF. Nucl. Sci. Tech. 29, 147 (2018). https://doi.org/10.1007/s41365-018-0479-9

    Article  Google Scholar 

  34. K.-H. Schmidt, E. Hanelt, H. Geissel et al., The momentum-loss achromat—a new method for the isotopical separation of relativistic heavy ions. Nucl. Instrum. Methods Phys. Res. A 260, 287 (1987). https://doi.org/10.1016/0168-9002(87)90092-1

    Article  ADS  Google Scholar 

  35. B.H. Sun, J.W. Zhao, X.H. Zhang et al., Towards the full realization of the RIBLL2 beam line at the HIRFL-CSR complex. Sci. Bull. 63, 78 (2018). https://doi.org/10.1016/j.scib.2017.12.005

    Article  Google Scholar 

  36. W. Liu, J.L. Lou, Y.L. Ye et al., Experimental study of intruder components in light neutron-rich nuclei via a single nucleon transfer reaction. Nucl. Sci. Tech. 31, 20 (2020). https://doi.org/10.1007/s41365-020-0731-y

    Article  Google Scholar 

  37. J. Chen, J.L. Lou, Y.L. Ye et al., A new measurement of the intruder configuration in \({}^{12}\)Be. Phys. Lett. B 781, 412 (2018). https://doi.org/10.1016/j.physletb.2018.04.016

    Article  ADS  Google Scholar 

  38. W.Q. Zhang, A.N. Andreyev, Z. Liu et al., First observation of a shape isomer and a low-lying strongly-coupled prolate band in neutron-deficient semi-magic \({}^{187}\)Pb. Phys. Lett. B 829, 137129 (2022). https://doi.org/10.1016/j.physletb.2022.137129

    Article  Google Scholar 

  39. X.H. Zhang, S.W. Tang, P. Ma et al., A multiple sampling ionization chamber for the external target facility. Nucl. Instrum. Methods Phys. Res. A 795, 389 (2015). https://doi.org/10.1016/j.nima.2015.06.022

    Article  ADS  Google Scholar 

  40. S.W. Tang, L.M. Duan, Z.Y. Sun et al., A longitudinal field multiple sampling ionization chamber for RIBLL2. Nucl. Phys. Rev. 29, 72 (2012). https://doi.org/10.11804/NuclPhysRev.29.01.072

    Article  Google Scholar 

  41. J.H. Liu, Z. Ge, Q. Wang et al., Electrostatic-lenses position-sensitive TOF MCP detector for beam diagnostics and new scheme for mass measurements at HIAF. Nucl. Sci. Tech. 30, 152 (2019). https://doi.org/10.1007/s41365-019-0676-1

    Article  Google Scholar 

  42. A. Gillibert, L. Bianchi, A. Cunsolo et al., Mass measurement of light neutron-rich fragmentation products. Phys. Lett. B 176, 317 (1986). https://doi.org/10.1016/0370-2693(86)90171-1

    Article  ADS  Google Scholar 

  43. B.H. Sun, J.W. Zhao, W.Q. Yan et al., A new Time-of-Flight mass measurement project for exotic nuclei and ultra-high precision detector development. EPJ Web Conf. 109, 04008 (2016). https://doi.org/10.1051/epjconf/201610904008

    Article  Google Scholar 

  44. F. Fang, S. Tang, S. Wang et al., Improving the particle identification of radioactive isotope beams at the RIBLL2 separator. Nucl. Phys. Rev. 39, 65 (2022). https://doi.org/10.11804/NuclPhysRev.39.2021035

    Article  Google Scholar 

  45. Z. Meisel, S. George, S. Ahn et al., Mass measurements demonstrate a strong N=28 shell gap in Argon. Phys. Rev. Lett. 114, 022501 (2015). https://doi.org/10.1103/PhysRevLett.114.022501

    Article  ADS  Google Scholar 

  46. Z. Meisel, S. George, S. Ahn et al., Mass measurement of \({}^{56}\)Sc reveals a small A=56 odd-even mass staggering, implying a cooler accreted neutron star crust. Phys. Rev. Lett. 115, 162501 (2015). https://doi.org/10.1103/PhysRevLett.115.162501

    Article  ADS  Google Scholar 

  47. S. Michimasa, M. Kobayashi, Y. Kiyokawa et al., Magic nature of neutrons in \({}^{54}\)Ca: first mass measurements of \({}^{55-57}\)Ca. Phys. Rev. Lett. 121, 022506 (2018). https://doi.org/10.1103/PhysRevLett.121.022506

    Article  ADS  Google Scholar 

  48. S. Michimasa, M. Kobayashi, Y. Kiyokawa et al., Mapping of a new deformation region around \({}^{62}\)Ti. Phys. Rev. Lett. 125, 122501 (2020). https://doi.org/10.1103/PhysRevLett.125.122501

    Article  ADS  Google Scholar 

  49. A.M. Rogers, A. Sanetullaev, W.G. Lynch et al., Tracking rare-isotope beams with microchannel plates. Nucl. Instrum. Methods Phys. Res. A 795, 325 (2015). https://doi.org/10.1016/j.nima.2015.05.070

    Article  ADS  Google Scholar 

  50. H. Kumagai, A. Ozawa, N. Fukuda et al., Delay-line PPAC for high-energy light ions. Nucl. Instrum. Methods Phys. Res. A 470, 562 (2001). https://doi.org/10.1016/S0168-9002(01)00804-X

    Article  ADS  Google Scholar 

  51. C. Scheidenberger, T. Stöhlker, W.E. Meyerhof et al., Charge states of relativistic heavy ions in matter. Nucl. Instrum. Methods Phys. Res. B 142, 441 (1998). https://doi.org/10.1016/S0168-583X(98)00244-4

    Article  ADS  Google Scholar 

  52. Z. Meisel, S. George, S. Ahn et al., Time-of-flight mass measurements of neutron-rich chromium isotopes up to N=40 and implications for the accreted neutron star crust. Phys. Rev. C 93, 035805 (2016). https://doi.org/10.1103/PhysRevC.93.035805

    Article  ADS  Google Scholar 

  53. K. Wang, A. Estrade, S. Neupane et al., Plastic scintillation detectors for time-of-flight mass measurements. Nucl. Instrum. Methods Phys. Res. A 974, 164199 (2020). https://doi.org/10.1016/j.nima.2020.164199

    Article  Google Scholar 

  54. S. Michimasa, M. Takaki, M. Dozono et al., Development of CVD diamond detector for time-of-flight measurements. Nucl. Instrum. Methods Phys. Res. B 317, 710 (2013). https://doi.org/10.1016/j.nimb.2013.08.055

    Article  ADS  Google Scholar 

  55. D. Lunney, J.M. Pearson, C. Thibault et al., Recent trends in the determination of nuclear masses. Rev. Mod. Phys. 75, 1021 (2003). https://doi.org/10.1103/RevModPhys.75.1021

    Article  ADS  Google Scholar 

  56. A.K. Mistry, H.M. Albers, T. Arıcı et al., The DESPEC setup for GSI and FAIR. Nucl. Instrum. Methods Phys. Res. B 1033, 166662 (2022). https://doi.org/10.1016/j.nima.2022.166662

    Article  Google Scholar 

  57. S. Nishimura, Beta-gamma spectroscopy at RIBF. Prog. Theor. Exp. Phys. 2012, 03C006 (2012). https://doi.org/10.1093/ptep/pts078

    Article  Google Scholar 

  58. N. Iwasa, H. Geissel, G. Münzenberg et al., MOCADI, a universal Monte Carlo code for the transport of heavy ions through matter within ion-optical systems. Nucl. Instrum. Methods Phys. Res. B 126, 284 (1997). https://doi.org/10.1016/S0168-583X(97)01097-5

    Article  ADS  Google Scholar 

  59. P.J. Bryant, AGILE, a tool for interactive lattice design. Proc. EPAC 2000, 1357 (2000)

    Google Scholar 

  60. H. Wollnik, B. Hartmann, M. Berz et al., Principles of GIOS and COSY. AIP Conf. Proc. 177, 74 (1988). https://doi.org/10.1063/1.37817

    Article  ADS  Google Scholar 

  61. A.S. Goldhaber, Statistical models of fragmentation processes. Phys. Lett. B 53, 306 (1974). https://doi.org/10.1016/0370-2693(74)90388-8

    Article  ADS  Google Scholar 

  62. B. Mei, Improved empirical parameterization for projectile fragmentation cross sections. Phys. Rev. C 95, 034608 (2017). https://doi.org/10.1103/PhysRevC.86.014601

    Article  ADS  Google Scholar 

  63. F.G. Kondev, M. Wang, W.J. Huang et al., The NUBASE2020 evaluation of nuclear physics properties. Chin. Phys. C 45, 030001 (2021). https://doi.org/10.1088/1674-1137/abddae

    Article  ADS  Google Scholar 

  64. Z. Ge, Q. Wang, M. Wang et al., Study of mass-measurement method for N=Z nuclei with isochronous mass spectrometry. Nucl. Phys. Rev. 36, 294 (2019). https://doi.org/10.11804/NuclPhysRev.36.03.294

    Article  ADS  Google Scholar 

  65. X. Xu, M. Wang, Y.H. Zhang et al., Direct mass measurements of neutron-rich \({}^{86}\)Kr projectile fragments and the persistence of neutron magic number N=\(32\) in Sc isotopes. Chin. Phys. C 39, 104001 (2015). https://doi.org/10.1088/1674-1137/39/10/104001

    Article  ADS  Google Scholar 

  66. G. Audi, M. Wang, A.H. Wapstra et al., The Ame 2012 atomic mass evaluation. Chin. Phys. C 36, 1287 (2012). https://doi.org/10.1088/1674-1137/36/12/002

    Article  Google Scholar 

  67. D. Lunney, J.M. Pearson, C. Thibault et al., Recent trends in the determination of nuclear masses. Rev. Mod. Phys. 75, 1021 (2003). https://doi.org/10.1103/RevModPhys.75.1021

    Article  ADS  Google Scholar 

  68. ROOT: analyzing petabytes of data, scientifically

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Shao-Bo Ma, Li-Na Sheng, Kai-Long Wang and Xue-Heng Zhang. The first draft of the manuscript was written by Shao-Bo Ma, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xue-Heng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This work was supported by the High-Intensity heavy-ion Accelerator Facility (HIAF) project approved by the National Development and Reform Commission of China.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, SB., Sheng, LN., Zhang, XH. et al. Opportunities for production and property research of neutron-rich nuclei around N = 126 at HIAF. NUCL SCI TECH 35, 97 (2024). https://doi.org/10.1007/s41365-024-01454-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-024-01454-w

Keywords

Navigation