Skip to main content
Log in

Gamma-, neutron-, and muon-induced environmental background simulations for 100Mo-based bolometric double-beta decay experiment at Jinping Underground Laboratory

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The sensitivity of an experiment to detect the Majorana neutrino mass via neutrinoless double-beta decay (\(0\nu \beta \beta\)) strongly depends on the rate of background events that can mimic this decay. One major source of this background is the radioactive emissions from the laboratory environment. In our study, we focused on assessing the background contributions from environmental gamma rays, neutrons, and underground muons to the Jinping bolometric demonstration experiment. This experiment uses an array of lithium molybdate crystal bolometers to probe the potential \(0\nu \beta \beta\) decay of the \(^{100}\)Mo isotope at the China Jinping Underground Laboratory. We also evaluated the shielding effectiveness of the experimental setup through an attenuation study. Our simulations indicate that the combined background from environmental gamma rays, neutrons, and muons in the relevant \(^{100}\)Mo \(0\nu \beta \beta\) Q-value region can be reduced to approximately 0.003 cts/kg/keV/yr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.10675 and https://cstr.cn/31253.11.sciencedb.10675.

References

  1. S.M. Bilenky, C. Giunti, Neutrinoless double-beta decay: a probe of physics beyond the Standard Model. Int. J. Mod. Phys. A 30, 1530001 (2015). https://doi.org/10.1142/S0217751X1530001X

    Article  ADS  MathSciNet  Google Scholar 

  2. D.Q. Adams, C. Alduino, K. Alfonso et al., (CUORE collaboration), improved limit on neutrinoless double-beta decay in \(^{130} \rm Te\) with CUORE. Phys. Rev. Lett. 124, 122501 (2020). https://doi.org/10.1103/PhysRevLett.124.122501

    Article  ADS  Google Scholar 

  3. J.B. Albert, G. Anton, I. Badhrees et al., (EXO collaboration), search for neutrinoless double-beta decay with the upgraded EXO-200 detector. Phys. Rev. Lett. 120, 072701 (2018). https://doi.org/10.1103/PhysRevLett.120.072701

    Article  ADS  Google Scholar 

  4. M. Agostini, A.M. Bakalyarov, M. Balata et al., (GERDA collaboration), improved limit on neutrinoless double-\(\beta\) decay of \(^{76}\rm Ge\) from GERDA phase II. Phys. Rev. Lett. 120, 132503 (2018). https://doi.org/10.1103/PhysRevLett.120.132503

    Article  ADS  Google Scholar 

  5. A. Gando, Y. Gando, T. Hachiya et al., (KamLAND-Zen collaboration), Search for Majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen. Phys. Rev. Lett. 117, 082503 (2016). https://doi.org/10.1103/PhysRevLett.117.082503

  6. M. Biassoni, O. Cremonesi, Search for neutrino-less double beta decay with thermal detectors. Prog. Part. Nucl. Phys. 114, 103803 (2020). https://doi.org/10.1016/j.ppnp.2020.103803

    Article  Google Scholar 

  7. W.R. Armstrong, et al. (The CUPID Interest Group), arXiv:1907.09376

  8. E. Armengaud, C. Augier, A.S. Barabash et al., (CUPID collaboration), New limit for neutrinoless double-beta decay of \(^{100}\rm Mo\) from the CUPID-Mo experiment. Phys. Rev. Lett. 126, 181802 (2020). https://doi.org/10.1103/PhysRevLett.126.181802

  9. E. Armengaud, C. Augier, A. Barabash et al., Precise measurement of \(2\nu \beta \beta\) decay of \(^{100}\)Mo with the CUPID-Mo detection technology. Eur. Phys. J. C 80, 674 (2020). https://doi.org/10.1140/epjc/s10052-020-8203-4

  10. A. Alessandrello, C. Arpesella, C. Brofferio et al., Measurements of internal radioactive contamination in samples of Roman lead to be used in experiments on rare events. Nucl. Instrum. Meth. Phys. Res. B 142, 163–172 (1998). https://doi.org/10.1016/S0168-583X(98)00279-1

    Article  ADS  Google Scholar 

  11. A. Luqman, D.H. Ha, J.J. Lee et al., Simulations of background sources in AMoRE-I experiment. Nucl. Instrum. Meth. Phys. Res. A 855, 140–147 (2017). https://doi.org/10.1016/j.nima.2017.01.070

    Article  ADS  Google Scholar 

  12. F. Alessandria, R. Ardito, D.R. Artusa et al., (CUORE collaboration), Validation of techniques to mitigate copper surface contamination in CUORE. Astropart. Phys. 45, 13–22 (2013). https://doi.org/10.1016/j.astropartphys.2013.02.005

  13. H.W. Bae, E.J. Jeon, Y.D. Kim et al., Neutron and muon-induced background studies for the AMoRE double-beta decay experiment. Astropart. Phys. 114, 60–67 (2020). https://doi.org/10.1016/j.astropartphys.2019.06.006

    Article  ADS  Google Scholar 

  14. C. Alduino, K. Alfonso, D.R. Artusa et al., (CUORE collaboration), The projected background for the CUORE experiment. Eur. Phys. J. C 77, 543 (2017). https://doi.org/10.1140/epjc/s10052-017-5080-6

  15. W. Chen, L. Ma, J.H. Chen et al., Cosmogenic background study for a \(^{100}\)Mo-based bolometric demonstration experiment at China JinPing underground Laboratory. Eur. Phys. J. C 82, 549 (2022). https://doi.org/10.1140/epjc/s10052-022-10501-y

    Article  ADS  Google Scholar 

  16. P.N. Peplowski, J.T. Wilson et al., Cosmogenic radionuclide production modeling with Geant4: experimental benchmarking and application to nuclear spectroscopy of asteroid (16) Psyche. Nucl. Instrum. Meth. Phys. Res. B 446, 43–57 (2019). https://doi.org/10.1016/j.nimb.2019.03.023

  17. F. Bellini, C. Bucci, S. Capelli et al., Monte Carlo evaluation of the external gamma, neutron and muon induced background sources in the CUORE experiment. Astroparticle Physics 33, 169–174 (2010). https://doi.org/10.1016/j.astropartphys.2010.01.004

    Article  ADS  Google Scholar 

  18. M. Haffke, L. Baudis, T. Bruch et al., Background measurements in the Gran Sasso underground laboratory. Nucl. Instrum. Meth. Phys. Res. A 643, 36–41 (2011). https://doi.org/10.1016/j.nima.2011.04.027

    Article  ADS  Google Scholar 

  19. J. Allison, K. Amako, J. Apostolakis et al., Recent developments in Geant4. Nucl. Instrum. Methods A 835, 186 (2016). https://doi.org/10.1016/j.nima.2016.06.125

    Article  ADS  Google Scholar 

  20. S. Agostinelli, J. Allison, K. Amako et al., Geant4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

  21. D.-J. Zhao, S. Feng, P.-J. Cheng et al., Conceptual design of a Cs2LiLaBr6 scintillator-based neutron total cross section spectrometer on the back-n beam line at CSNS. Nucl. Sci. Tech. 34, 3 (2023). https://doi.org/10.1007/s41365-022-01152-5

  22. L.-H. Zhou, S.-Y. Cao, T. Sun et al., A refined Monte Carlo code for low-energy electron emission from gold material irradiated with sub-keV electrons. Nucl. Sci. Tech. 34(4), 54 (2023). https://doi.org/10.1007/s41365-023-01204-4

    Article  Google Scholar 

  23. Q.D. Hu, H. Ma, Z. Zeng et al., Neutron background measurements at China Jinping underground laboratory with a Bonner multi-sphere spectrometer. Nucl. Instrum. Meth. Phys. Res. A 859, 37–40 (2017). https://doi.org/10.1016/j.nima.2017.03.048

    Article  ADS  Google Scholar 

  24. Y. Elmahroug, B. Tellili, C. Souga,  Calculation of gamma and neutron shielding parameters for some materials polyethylene-based. Int. J. Phys. Res. 3(1), 33–40 (2013)

  25. D. Venkata Subramanian, A. Haridas, D. Sunil Kumar, Neutron attenuation studies with borated polyethylene slabs containing 30% natural boron and its comparison with hydrogenous materials. Indian J. Pure Appl. Phys 56, 583–586 (2018)

  26. H. Ma, Z. She, W.H. Zeng et al., In-situ gamma-ray background measurements for next generation CDEX experiment in the China Jinping underground laboratory. Astropart. Phys. 128, 102560 (2021). https://doi.org/10.1016/j.astropartphys.2021.102560

    Article  Google Scholar 

  27. Z. Zeng, J. Su, H. Ma et al., Environmental gamma background measurements in China Jinping Underground Laboratory. J. Radioanal. Nucl. Chem. 301(2), 443–450 (2014). https://doi.org/10.1007/s10967-014-3114-1

  28. Y.P. Shen, J. Su, W.P. Liu et al., Measurement of \(\gamma\) detector backgrounds in the energy range of 3–8 MeV at Jinping underground laboratory for nuclear astrophysics. Sci. China Phys. Mech. Astron. 60(10), 102022 (2017). https://doi.org/10.1007/s11433-017-9049-3

    Article  Google Scholar 

  29. Q. Yue, C.J. Tang, J.P. Cheng et al., A Monte Carlo study for the shielding of \(\gamma\) backgrounds induced by radionuclides for CDEX. Chin. Phys. C 35, 282 (2011). https://doi.org/10.1088/1674-1137/35/3/013

    Article  ADS  Google Scholar 

  30. R.M.J. Li, S.K. Liu, S.T. Lin et al., Identification of anomalous fast bulk events in a p-type point-contact germanium detector. Nucl. Sci. Tech. 33(5), 57 (2022). https://doi.org/10.1007/s41365-022-01041-x

    Article  Google Scholar 

  31. B. Schmidt et al., CUPID-Mo Collaboration, First data from the CUPID-Mo neutrinoless double beta decay experiment. J. Phys. Conf. Ser. 1468(1), 012129 (2020). https://doi.org/10.1088/1742-6596/1468/1/012129

  32. B. Aharmim, S.N. Ahmed, A.E. Anthony et al., Cosmogenic neutron production at the sudbury neutrino observatory. Phys. Rev. D 100, 112005 (2019). https://doi.org/10.1103/PhysRevD.100.112005

    Article  ADS  Google Scholar 

  33. V. A. Kudryavtsev, N.J.C. Spooner, J. E. McMillan, Simulations of muon-induced neutron flux at large depths underground. arXiv:hep-ex/0303007v1 (2003)

  34. Z.M. Zeng, H. Gong, Q. Yue et al., Thermal neutron background measurement in CJPL. Nucl. Instrum. Meth. A 804, 108–112 (2015). https://doi.org/10.1016/j.nima.2015.09.043

    Article  ADS  Google Scholar 

  35. G. Bruno, W. Fulgione, Flux measurement of fast neutrons in the Gran Sasso underground laboratory. Eur. Phys. J. C 79, 747 (2019). https://doi.org/10.1140/epjc/s10052-019-7247-9

    Article  ADS  Google Scholar 

  36. Q.H. Wang, A. Abdukerim, W. Chen et al., An improved evaluation of the neutron background in the PandaX-II experiment. Sci. China Phys. Mech. Astron. 63(3), 231011 (2020). https://doi.org/10.1007/s11433-019-9603-9

    Article  ADS  Google Scholar 

  37. Q. Du, S.T. Lin, S.K. Liu et al., Measurement of the fast neutron background at the China Jinping underground laboratory. Nucl. Instrum. Meth. Phys. Res. A 889, 105–112 (2018). https://doi.org/10.1016/j.nima.2018.01.098

    Article  ADS  Google Scholar 

  38. H. Wulandari, J. Jochum, W. Rau et al., Neutron flux at the Gran Sasso underground laboratory revisited. Astropart. Phys. 22, 313–322 (2004). https://doi.org/10.1016/j.astropartphys.2004.07.005

    Article  ADS  Google Scholar 

  39. E. Andreotti, C. Arnaboldi, F.T. Avignone III et al., Muon-induced backgrounds in the CUORICINO experiment. Astropart. Phys. 34, 18–24 (2010). https://doi.org/10.1016/j.astropartphys.2010.04.004

  40. T.K. Gaisser, R. Engel, E. Resconi, Cosmic rays and particle physics. (Cambridge University Press, New York, 1990), p. 71

  41. D.M. Mei, A. Hime, Muon-induced background study for underground laboratories. Phys. Rev. D 73, 053004 (2006). https://doi.org/10.1103/PhysRevD.73.053004

    Article  ADS  Google Scholar 

  42. X.H. Hu, Simulation of cosmic ray background at CJPL, Master’s Dissertation, Nankai University, (2013) (in Chinese)

  43. Z.Y. Guo, L.B. Peters, S.M. Chen et al., Muon flux measurement at China Jinping underground laboratory. Chin. Phys. C 45, 025001 (2021). https://doi.org/10.1088/1674-1137/abccae

    Article  ADS  Google Scholar 

  44. H. Arslan, M. Bektasoglu, Geant4 simulation study of deep underground muons: Vertical intensity and angular distribution. Adv. High Energy Phys. 2013, 391573 (2013). https://doi.org/10.1155/2013/391573

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Wei Chen, Long Ma, Jin-Hui Chen, and Huan-Zhong Huang. The first draft of the manuscript was written by Long Ma, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Long Ma.

Ethics declarations

Conflict of interest

Jin-Hui Chen is an editorial board member for Nuclear Science and Techniques and was not involved in the editorial review, or the decision to publish this article. All authors declare that there are no competing interests.

Additional information

This work was supported in part by the State Key Research Development Program in China (Nos. 2022YFA1604702 and 2022YFA1604900), the National Natural Science Foundation of China (No. 12025501), and Strategic Priority Research Program of Chinese Academy of Science (No. XDB34030200).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Ma, L., Chen, JH. et al. Gamma-, neutron-, and muon-induced environmental background simulations for 100Mo-based bolometric double-beta decay experiment at Jinping Underground Laboratory. NUCL SCI TECH 34, 135 (2023). https://doi.org/10.1007/s41365-023-01299-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01299-9

Keywords

Navigation