Skip to main content
Log in

Derivatives and the Study of Motion at the Intersection of Calculus and Mechanics: a Praxeological Analysis of Practices at the College Level

  • Published:
International Journal of Research in Undergraduate Mathematics Education Aims and scope Submit manuscript

Abstract

Of the many disciplines that rely on calculus, physics is among those with the strongest connections to this branch of mathematics. For instance, the derivative—one of the key notions of calculus—is used to describe velocity and acceleration, which play a central role in mechanics. In post-secondary education, in particular at the college level, it is not unusual for students to enroll in calculus and mechanics courses in the same year, and even the same term. In mathematics education, however, there is scant research focusing on students’ construction of the notion of derivative in a mechanics context, and existing studies offer contradictory views on the effectiveness of using mechanics to teach derivatives. To shed light on the use of derivatives in mechanics and calculus courses, our study focuses on practices involving the use of derivatives to study motion in both courses. We first conducted a praxeological analysis of five differential calculus textbooks and five mechanics textbooks to pinpoint their use of derivatives in the study of motion. This analysis was complemented by interviews with four mathematics teachers and three mechanics teachers, to compare their praxeologies with those of the textbooks. We then identified consistencies and inconsistencies between practices employed in both courses, which may have an impact on students’ learning, and formulated recommendations for teaching the notion of derivative in kinematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Material

To maintain confidentiality of participants, we do not make entire verbatim transcripts of our interviews available.

Code Availability

Not applicable.

Notes

  1. The calculus sequence consists of differential calculus (usually Term 1), integral calculus (usually Term 2), and an optional multivariable calculus course (usually Term 4). Students in College A take differential calculus in their first term.

  2. “Despite the name, free fall is not restricted to objects that are literally falling. Any object moving under the influence of gravity only, and no other forces, is in free fall. This includes objects falling straight down, objects that have been tossed or shot straight up, and projectile motion” (Knight, 2017, p. 50).

References

  • Artigue, M. (2016). Mathematics education research at university level: Achievements and challenges. In E. Nardi, C. Winsløw, & T. Hausberger (Eds.), Proceedings of INDRUM 2016, First conference of International Network for Didactic Research in University Mathematics (pp. 11–27). University of Montpellier and INDRUM.

  • Barbé, J., Bosch, M., Espinoza, L., & Gascón, J. (2005). Didactic restrictions on the teacher’s practice: The case of limits of functions in spanish high schools. Educational Studies in Mathematics, 59(1), 235–268. https://doi.org/10.1007/s10649-005-5889-z

    Article  Google Scholar 

  • Başkan, Z., Alev, N., & Karal, I. S. (2010). Physics and mathematics teachers’ ideas about topics that could be related or integrated. Procedia - Social and Behavioral Sciences, 2(2), 1558–1562. https://doi.org/10.1016/j.sbspro.2010.03.235

  • Basson, I. (2002). Physics and mathematics as interrelated fields of thought development using acceleration as an example. International Journal of Mathematical Education in Science and Technology, 33(5), 679–690. https://doi.org/10.1080/00207390210146023

    Article  Google Scholar 

  • Benson, H., Lachance, M., Villeneuve, B., & Séguin, M. (2015). Physique 1 : Mécanique (5 ed., Vol. 1). Éditions du Renouveau Pédagogique (ERPI).

  • Bosch, M., Chevallard, Y., García, F. J., & Monaghan, J. (Eds.). (2020). Working with the anthropological theory of the didactic in mathematics education : a comprehensive casebook. Routledge. https://doi.org/10.4324/9780429198168

  • Bosch, M., & Gascón, J. (2006). Twenty-five years of the didactic transposition. ICMI Bulletin, 58, 51–65.

    Google Scholar 

  • Bressoud, D. M. (2011). The calculus I instructor. https://www.maa.org/external_archive/columns/launchings/launchings_06_11.html

  • Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352–378.

    Article  Google Scholar 

  • Castela, C. (2017). When praxeologies move from an institution to another: an epistemological approach to boundary crossing. In R. Göller, R. Biehler, R. Hochmuth, & H.-G. Rüc (Eds.), Proceedings of the KHDM Conference: Didactics of Mathematics in Higher Education as a Scientific Discipline (pp. 418–425). Universitätsbibliothek Kassel. http://nbn-resolving.de/urn:nbn:de:hebis:34-2016041950121

  • Charron, G., & Parent, P. (2014). Calcul différentiel (8e ed.). Chenelière éducation.

  • Chevallard, Y. (2003). Approche anthropologique du rapport au savoir et didactique des mathématiques. In S. Maury & M. Caillot (Eds.), Rapport au savoir et didactiques (pp. 81–104). Fabert.

    Google Scholar 

  • Christensen, W. M., & Thompson, J. R. (2012). Investigating graphical representations of slope and derivative without a physics context. Physical Review Special Topics - Physics Education Research, 8(2), 1–5. https://doi.org/10.1103/PhysRevSTPER.8.023101

    Article  Google Scholar 

  • Faulkner, B., Johnson-Glauch, N., San Choi, D., & Herman, G. L. (2020). When am I ever going to use this? An investigation of the calculus content of core engineering courses. Journal of Engineering Education, 109(3), 402–423. https://doi.org/10.1002/jee.20344

  • Gantois, J.-Y., & Schneider, M. (2009). Introduire les dérivées par les vitesses. Pour qui ? Pourquoi ? Comment ? Petit x, 79, 5–21.

    Google Scholar 

  • Gantois, J.-Y., & Schneider, M. (2012). Une forme embryonnaire du concept de dérivée induite par un milieu graphico-cinématique dans une praxéologie ‘modélisation.’ Recherches En Didactique Des Mathématiques, 32(1), 57–99.

    Google Scholar 

  • González-Martín, A. S. (2021). \(V_B-V_A= \int_A^B f(x)dx\). The use of integrals in engineering programmes: a praxeological analysis of textbooks and teaching practices in Strength of Materials and Electricity and Magnetism courses. International Journal of Research in Undergraduate Mathematics Education, 7(2), 211–234. https://doi.org/10.1007/s40753-021-00135-y

  • González-Martín, A. S., Biza, I., Cooper, J., Ghedamsi, I., Gueudet, G., Mesa, V., Pinto, A., & Viirman, O. (2019). Introduction to the papers of TWG14: University mathematics education. In U. T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of the 11th Congress of the European Society for Research in Mathematics Education (CERME11) (pp. 2400–2407). Freudenthal Group & Freudenthal Institute, Utrecht University and ERME.

  • González-Martín, A. S., Giraldo, V., & Souto, A. M. (2013). The introduction of real numbers in secondary education: An institutional analysis of textbooks. Research in Mathematics Education, 15(3), 230–248. https://doi.org/10.1080/14794802.2013.803778

    Article  Google Scholar 

  • González-Martín, A. S., Nardi, E., & Biza, I. (2018). From resource to document: Scaffolding content and organising student learning in teachers’ documentation work on the teaching of series. Educational Studies in Mathematics, 98(3), 231–252. https://doi.org/10.1007/s10649-018-9813-8

    Article  Google Scholar 

  • Hamel, J., & Amyotte, L. (2018). Calcul différentiel (2e ed.). Pearson ERPI.

  • Hitier, M., & González-Martín, A. S. (in press). “It all depends on the sign of the derivative”: A praxeological analysis of the use of the derivative in similar tasks in mathematics and mechanics. In Proceedings of the 12th Congress of the European Society for Research in Mathematics Education (CERME12).

  • Hitt, F., & González-Martín, A. S. (2016). Generalization, covariation, functions, and calculus. In Á. Gutiérrez, G. C. Leder, & P. Boero (Eds.), The Second Handbook of Research on the Psychology of Mathematics Education (pp. 3–38). Sense Publishers.

    Chapter  Google Scholar 

  • Hughes-Hallett, D. (2013). Calculus : single and multivariable (6 ed.). Wiley.

  • Jones, S. R. (2017). An exploratory study on student understandings of derivatives in real-world, non-kinematics contexts. The Journal of Mathematical Behavior, 45, 95–110. https://doi.org/10.1016/j.jmathb.2016.11.002

    Article  Google Scholar 

  • Knight, R. D. (2017). Physics for scientists and engineers (4th ed.). Pearson.

  • Lafrance, R., & Parent, J. (2014). Physique 1: Mécanique (Vol. 1). Chenelière éducation.

  • Larsen, S., Marrongelle, K., Bressoud, D., & Graham, K. (2017). Understanding the concepts of calculus: Frameworks and roadmaps emerging from educational research. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 526–550). National Council of Teachers of Mathematics.

    Google Scholar 

  • Marrongelle, K. (2004). How students use physics to reason about calculus tasks. School Science and Mathematics, 104(6), 258–272.

    Article  Google Scholar 

  • Marrongelle, K., Black, K., & Meredith, D. (2003). Studio calculus and physics: Interdisciplinary mathematics with active learning. In S. A. McGraw (Ed.), Integrated mathematics: Choices and challenges (pp. 103–116). National Council of Teachers of Mathematics.

    Google Scholar 

  • Mesa, V., & Griffiths, B. (2012). Textbook mediation of teaching: An example from tertiary mathematics instructors. Educational Studies in Mathematics, 79(1), 85–107. https://doi.org/10.1007/s10649-011-9339-9

    Article  Google Scholar 

  • Orton, A. (1983). Students’ understanding of differentiation. Educational Studies in Mathematics, 14(3), 235–250. https://doi.org/10.1007/BF00410540

    Article  Google Scholar 

  • Park, J. (2013). Is the derivative a function? If so, how do students talk about it? International Journal of Mathematical Education in Science and Technology, 44(5), 624–640. https://doi.org/10.1080/0020739X.2013.795248

    Article  Google Scholar 

  • Park, J. (2015). Is the derivative a function? If so, how do we teach it? Educational Studies in Mathematics, 89(2), 233–250. https://doi.org/10.1007/s10649-015-9601-7

    Article  Google Scholar 

  • Park, J. (2016). Communicational approach to study textbook discourse on the derivative. Educational Studies in Mathematics, 91(3), 395–421. https://doi.org/10.1007/s10649-015-9655-6

    Article  Google Scholar 

  • Petersen, M., Enoch, S., & Noll, J. (2014). Student calculus reasoning contexts. In T. Fukawa-Connolly, G. Karakok, K. Keene, & M. Zandieh (Eds.), Proceedings of the 17th Annual Conference on Research in Undergraduate Mathematics Education (pp. 984–990). Northern Colorado University.

  • Pospiech, G. (2019). Framework of mathematization in physics from a teaching perspective. In G. Pospiech, M. Michelini, & B.-S. Eylon (Eds.), Mathematics in Physics Education (pp. 1–33). Springer International Publishing. https://doi.org/10.1007/978-3-030-04627-9_1

  • Rasmussen, C., & Ellis, J. (2013). Who is switching out of calculus and why. In A. M. Lindmeier & A. Heinze (Eds.), Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 73–80). IPN, Leibniz Institute for Science and Mathematics Education.

  • Rasmussen, C., Marrongelle, K., & Borba, M. C. (2014). Research on calculus: What do we know and where do we need to go? ZDM Mathematics Education, 46(4), 507–515. https://doi.org/10.1007/s11858-014-0615-x

    Article  Google Scholar 

  • Roorda, G., Vos, P., & Goedhart, M. (2015). An actor-oriented transfer perspective on high school students’ development of the use of procedures to solve problems on rate of change. International Journal of Science and Mathematics Education, 13(4), 863–889. https://doi.org/10.1007/s10763-013-9501-1

    Article  Google Scholar 

  • Saldaña, J. (2013). The coding manual for qualitative researchers (2 ed.). Sage.

  • Séguin, M., Descheneau, J., & Tardif, B. (2010). Physique XXI : Mécanique (Vol. A). ERPI.

  • Serway, R. A., & Jewett Jr, J. W. (2014). Physics for scientists and engineers with modern physics (9th ed.). Brooks/Cole.

  • Stewart, J. (2013). Single variable essential calculus : Early transcendentals (2nd ed.). Cengage Learning.

    Google Scholar 

  • Stewart, J. (2016). Calculus: Early transcendentals (8 ed.). Cengage Learning.

  • Taşar, M. F. (2010). What part of the concept of acceleration is difficult to understand: The mathematics, the physics, or both? ZDM Mathematics Education, 42(5), 469–482. https://doi.org/10.1007/s11858-010-0262-9

    Article  Google Scholar 

  • Thompson, P. W. (1994). Images of rate and operational understanding of the fundamental theorem of calculus. Educational Studies in Mathematics, 26(2–3), 229–274. https://doi.org/10.1007/BF01273664

    Article  Google Scholar 

  • Uhden, O., Karam, R., Pietrocola, M., & Pospiech, G. (2012). Modelling mathematical reasoning in physics education. Science & Education, 21(4), 485–506. https://doi.org/10.1007/s11191-011-9396-6

    Article  Google Scholar 

  • Wijayanti, D., & Winslow, C. (2017). Mathematical practice in textbooks analysis: Praxeological reference models, the case of proportion. REDIMAT, 6(3), 307–330. https://doi.org/10.17583/redimat.2017.2078

  • Zandieh, M. (2000). A theoretical framework for analyzing student understanding of the concept of derivative. Research in Collegiate Mathematics Education IV, 8, 103–127.

    Google Scholar 

  • Zandieh, M. J., & Knapp, J. (2006). Exploring the role of metonymy in mathematical understanding and reasoning: The concept of derivative as an example. The Journal of Mathematical Behavior, 25(1), 1–17. https://doi.org/10.1016/j.jmathb.2005.11.002

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathilde Hitier.

Ethics declarations

Conflict of Interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hitier, M., González-Martín, A.S. Derivatives and the Study of Motion at the Intersection of Calculus and Mechanics: a Praxeological Analysis of Practices at the College Level. Int. J. Res. Undergrad. Math. Ed. 8, 293–317 (2022). https://doi.org/10.1007/s40753-022-00182-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40753-022-00182-z

Keywords

Navigation